摘要
设n是大于2的工整数,D是无平方因子正整数,分别是K的理想类群和类数.对于正整数m,设gk(m)是Ix中阶数等于m的理想类的个数.本文证明了:超椭圆曲线f(x,y)=Dx2-4yn+1=0上整数点(x,y)的个数不超过max(8,2164P81gk(P)),其中p是n的奇素因数.
Let n be a positive integer with n > 2. Let D be a positive integer with square free,and let Ik, hk denote the ideal class group and the class number of the imaginary quadratic field K=respectively.In this paper we prove that the number of integral points (x, y) on the hyperelliptic curve f(x, y) =-Dx2-4yn+1 is no more than max (8, 2164p81gx(p)) for any odd prime factor p of n, where gK(p) is the number of ideal classes in Ik with order p.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1996年第3期289-293,共5页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
广东省自然科学基金
关键词
超椭圆曲线
整数点个数
上界
代数整数
hyperelliptic curve, number of integral points,upper bound