摘要
本文研究华沙圈上定义的连续映射的动力性质.指出对于定义在华沙圈上的连续自映射而言,有与线段自映射相应的Sarkovskii定理,周期点集的闭包与回归点集的闭包相等,中心为周期点集的闭包,中心的深度不大于4,以及拓扑熵为零的充要条件是它的周期点的周期都是2的方幂.
In the present paper we study the dynamical properties of continuous maps on the Warsaw circle and show that for such a map a theorem similar to the Sarkovskii Theorem for interval maps holds, the closure of the set of periodic points coincides with the closure of the set of recurrent points, the depth of the center is not greater than 4, and the topological entropy is zero if and only if the periods of periodic points are the powers of 2.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
1996年第3期294-299,共6页
Acta Mathematica Sinica:Chinese Series
基金
国家自然科学基金
关键词
华沙圈
动力性质
连续映射
拓扑熵
拓扑空间
Warsaw circle, dynamical property, Sarkovskii space, center, depth of the center