期刊文献+

T1 THEOREM FOR BESOV SPACES ON NONHOMOGENEOUS SPACES

T1 THEOREM FOR BESOV SPACES ON NONHOMOGENEOUS SPACES
下载PDF
导出
摘要 Suppose μ is a Radon measure on R^d, which may be non doubling. The only condition assumed on μ is a growth condition, namely, there is a constant Co 〉 0 such that for all x ∈ supp(μ) and r 〉 0, μ(B(x, r)) ≤ Cor^n, where 0 〈 n ≤ d. We prove T1 theorem for non doubling measures with weak kernel conditions. Our approach yields new results for kernels satisfying weakened regularity conditions, while recovering previously known Tolsa's results. We also prove T1 theorem for Besov spaces on nonhomogeneous spaces with weak kernel conditions given in [7] . Suppose μ is a Radon measure on R^d, which may be non doubling. The only condition assumed on μ is a growth condition, namely, there is a constant Co 〉 0 such that for all x ∈ supp(μ) and r 〉 0, μ(B(x, r)) ≤ Cor^n, where 0 〈 n ≤ d. We prove T1 theorem for non doubling measures with weak kernel conditions. Our approach yields new results for kernels satisfying weakened regularity conditions, while recovering previously known Tolsa's results. We also prove T1 theorem for Besov spaces on nonhomogeneous spaces with weak kernel conditions given in [7] .
出处 《Analysis in Theory and Applications》 2005年第3期280-293,共14页 分析理论与应用(英文刊)
基金 The project was supported by the National Natural Science Fbundation of China(Grant No.10171111) the Foundation of Zhongshan University Advanced Research Center.
关键词 Besov space T1 theorem nonhomogeneous space Calderón-Zygmund operator Littlewood-Paley theory Besov space, T1 theorem, nonhomogeneous space, Calderón-Zygmund operator, Littlewood-Paley theory
  • 相关文献

参考文献10

  • 1David, G. and Journé, J. L., A Boundedness Criterion for Generalized Calderón-Zygmund Operators,Ann. Math., 120(1984), 371-397.
  • 2David, G., Journé, J. L. and Semmes, S., Operateurs de Calderón-Zygmund, Function Para accretive et Interpolation, Rev. Mat. Iberoamericanna, 1(1985), 1-56.
  • 3Coifman, R. and Weiss, G., Analyse Harmonique Non-Commutative sur Certains Espaces HOmogenes, Lecture Notes in Math., Vol.242, Springer-Verlag, Berlin and New York, 1971.
  • 4Tolsa, X., Littlewood-Paley Theory and the T1 Theorem with Non-Doubling Measures, Adv. Math.,164(2001), 57-116.
  • 5Stein, E. M., Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals,Princeton Univ. Press, Princeton, N. J. 1993.
  • 6Deng, D. D., Han, Y. S. and Yang, D. C., Besov Spaces with Non Doubling Measures, to Appear in Trans. Amer. Math. Soc.
  • 7Han, Y. S. and Hofmann, S., T1 Theorems for Besov and Triebel-Lizorkin Spaces, Trans. AMS,337:2(1993), 839-853.
  • 8Tolsa, X., BMO, H1 and Calderón-Zygmund Operators for Non Doubling Measures, Math. Ann.,319(2001), 89-149.
  • 9Han, Y, S, and Hofmann, S,, T1 Theorems for Besov and Triebel-Lizorkin Spaces, Trans, AMS,337:2(1993), 839-853.
  • 10Han, Y. S. and Yang, D. C., Triebel-Lizorkin Spaces with Non Doubling Measures, Studia Math.,162(2)(2004), 105-139.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部