期刊文献+

EQUILIBRIUM PROBLEMS WITH LOWER AND UPPER BOUNDS IN TOPOLOGICAL SPACES 被引量:5

EQUILIBRIUM PROBLEMS WITH LOWER AND UPPER BOUNDS IN TOPOLOGICAL SPACES
下载PDF
导出
摘要 By employing a fixed point theorem due to Ding, Park and Jung, some existence theorems of solutions for equilibrium problems with lower and upper bounds are proved in noncompact topological spaces. These results further answer the open problem raised by Isac, Sehgal and Singh under much weaker assumptions. By employing a fixed point theorem due to Ding, Park and Jung, some existence theorems of solutions for equilibrium problems with lower and upper bounds are proved in noncompact topological spaces. These results further answer the open problem raised by Isac, Sehgal and Singh under much weaker assumptions.
作者 丁协平
出处 《Acta Mathematica Scientia》 SCIE CSCD 2005年第4期658-662,共5页 数学物理学报(B辑英文版)
基金 ThisprojectwassupportedbytheNSFofSichuanEducationDepartment(2003A081)
关键词 Equilibrium problem fixed point theorem contractible space acyclic space topological space Equilibrium problem, fixed point theorem, contractible space, acyclic space,topological space
  • 相关文献

参考文献9

  • 1Blum E, Oettli W. From optimization and variational inequalities to equilibriun problems. Math Students,1994, 63:123-145
  • 2Oettli W, Schlager D. Existence of equilibria for g-monotone mappings. In: Nonlinear Analysis and Convex Analysis. Singapore: World Scientific, 1999. 26-33
  • 3Bianchi M, Schaible S. Generalized monotone bifunctions and equilibrium problems. J Optim Theory Appl, 1996, 90(1): 31-43
  • 4Ding X P, Park J Y, Jung I H. Existence of solutions for nonlinear inequalities in G-convex spaces. Appl Math Lett, 2002, 15: 735-741
  • 5Isac G, Sehgal V M, Singh S P. An alternate version of a variational inequality. Indian J Math, 1999,41(1): 25-31
  • 6Li J. A lower and upper bounds of a variational inequality. Appl Math Lett, 2000, 13(5): 47-51
  • 7Chadli O, Chiang Y, Yao J C. Equilibrium problems with lower and upper bounds. Appl Math Lett, 2002,15:327-331
  • 8Ding X P. New H - KKM theorems and their applications to geometric property, coincidence theorems,minimax inequality and maximal elements. Indian J Pure Appl Math, 1995, 26(1): 1-19
  • 9Ding X P, Park J Y, Jung I H. Fixed point theorems on product topological spaces and applications.Positivity, 2004, 8:315-326

同被引文献17

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部