期刊文献+

THE N-WIDTHS FOR A GENERALIZED PERIODIC BESOV CLASSES 被引量:1

THE N-WIDTHS FOR A GENERALIZED PERIODIC BESOV CLASSES
下载PDF
导出
摘要 In this paper, an extension of Besov classes of periodic functions on Td is given. The weak asymptotic results concerning the Kolmogorov n-widths, the linear n-widths, and the Gel'fand n-widths are obtained, respectively. In this paper, an extension of Besov classes of periodic functions on Td is given. The weak asymptotic results concerning the Kolmogorov n-widths, the linear n-widths, and the Gel'fand n-widths are obtained, respectively.
作者 许贵桥
出处 《Acta Mathematica Scientia》 SCIE CSCD 2005年第4期663-671,共9页 数学物理学报(B辑英文版)
基金 TheprojectwassupportedbyNationalNaturalScienceFoun-dationofChina(10471010)andtheDevelopmentFoundationofScienceandTechnologyofTianjinUniversities(52LD69)andtheYouthFoundationofTianjinNormalUniversity(52LE72)
关键词 Generalized Besov classes approximation n-widths Generalized Besov classes, approximation, n-widths
  • 相关文献

参考文献10

  • 1Pustovoitov N N. Representation and approximation of multivariate periodic functions with a given modulus of smoothness. Analysis Math, 1994, 20:35-48
  • 2Sun Yongsheng, Wang Heping. Representation and approximation of multivariate functions with bounded mixed moduli of smoothness. Proceedings of the Steklov Institute of Mathematics, 1997, 219:350-371
  • 3Pinkus A. N-widths in Approximation Theory. New York: Springer-Verlag, 1985
  • 4Romaniuk A S. Optimal trigonometric approximation and Kolmogorov widths for Besov classes of multivariate functions. Ukr Mat Zh, 1993, 45(5): 663-675
  • 5Romaniuk A S. Kolmogorov widths for classes Bp,θ^r of multivariate periodic functions with small smoothness in the space Lq. Ukr Mat Zh, 1994, 46(7): 915-926
  • 6Nikol'skii S M. Approximation of Functions of Several Variables and Imbedding Theorems. New York:Spring-Verlag, 1975
  • 7Liu Yongping, Xu Guiqiao. The Infinite-dimensional widths and optimal recovery of gengralized Besov Classes. Journal of Complexity, 2002, 18:815-832
  • 8Zygmund A. Trigonometric Series Ⅱ. New York: Cambridge Univ Press, 1959
  • 9Temlyakov V N. Approximation of Periodic Functions. New York: Nova Science Publishers, Inc, 1993
  • 10Xu Guiqiao, Yu Chunwu. The Gel'fand n-widths of multivariate periodic Besov classes. Acta Mathematica Scientia, 2003, 23B(3): 399-404

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部