摘要
This paper considers the Calerkin finite element method for the incompressible Navier-Stokes equations in two dimensions, where the finite-dimensional spaces employed consist of piecewise polynomials enriched with residual-free bubble (RFB) functions. The stability features of the residual-free bubble functions for the linearized Navier-Stokes equations are analyzed in this work. It is shown that the enrichment of the velocity space by bubble functions stabilizes the numerical method for any value of the viscosity parameter for triangular elements and for values of the viscosity parameter in the vanishing limit case for quadrilateral elements.
This paper considers the Calerkin finite element method for the incompressible Navier-Stokes equations in two dimensions, where the finite-dimensional spaces employed consist of piecewise polynomials enriched with residual-free bubble (RFB) functions. The stability features of the residual-free bubble functions for the linearized Navier-Stokes equations are analyzed in this work. It is shown that the enrichment of the velocity space by bubble functions stabilizes the numerical method for any value of the viscosity parameter for triangular elements and for values of the viscosity parameter in the vanishing limit case for quadrilateral elements.