期刊文献+

ON THE STABILITY OF THE RESIDUAL-FREE BUBBLES FOR THE NAVIER-STOKES EQUATIONS

ON THE STABILITY OF THE RESIDUAL-FREE BUBBLES FOR THE NAVIER-STOKES EQUATIONS
下载PDF
导出
摘要 This paper considers the Calerkin finite element method for the incompressible Navier-Stokes equations in two dimensions, where the finite-dimensional spaces employed consist of piecewise polynomials enriched with residual-free bubble (RFB) functions. The stability features of the residual-free bubble functions for the linearized Navier-Stokes equations are analyzed in this work. It is shown that the enrichment of the velocity space by bubble functions stabilizes the numerical method for any value of the viscosity parameter for triangular elements and for values of the viscosity parameter in the vanishing limit case for quadrilateral elements. This paper considers the Calerkin finite element method for the incompressible Navier-Stokes equations in two dimensions, where the finite-dimensional spaces employed consist of piecewise polynomials enriched with residual-free bubble (RFB) functions. The stability features of the residual-free bubble functions for the linearized Navier-Stokes equations are analyzed in this work. It is shown that the enrichment of the velocity space by bubble functions stabilizes the numerical method for any value of the viscosity parameter for triangular elements and for values of the viscosity parameter in the vanishing limit case for quadrilateral elements.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2005年第4期715-730,共16页 数学物理学报(B辑英文版)
关键词 Galerkin finite element method incompressible Navier-Stokes equations STABILITY Galerkin finite element method, incompressible Navier-Stokes equations, stability
  • 相关文献

参考文献25

  • 1Arnold D N, Brezzi F, Fortin M. A stable finite element for the Stokes equations. Calcolo, 1984, 23(4):337-344
  • 2Babuska I. The finite element method with Lagrangian multipilers. Numer Math, 1973, 20:179-192
  • 3Baiocchi C, Brezzi F, Franca L P. Virtual bubbles and the Galerkin-least-squares method. Comput Methods Appl Mech Engrg, 1993, 105:125-141
  • 4Brezzi F. On the existence, uniqueness and approximation of saddlepoint problems arising from Lagrange multipliers. RAIRO Ser Rouge, 1974, 8:129-151
  • 5Brezzi F, Bristeau M O, Franca L P, Mallet M, Rogé G. A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Comput Methods Appl Mech Engrg, 1992, 96:117-129
  • 6Brezzi F, Franca L P, Hughes T J R, Russo A. Stabilization techniques and subgrid scales capturing.In: the Proceedings of the Conference "State of the Art in Numerical Analysis". April 1-4, 1996, York,England.
  • 7Brezzi F, Franca L P, Hughes T J R, Russo A. b = f g. Comput Methods Appl Mech Engrg, 1997, 145:329-339
  • 8Brezzi F, Franca L P, Russo A. Further considerations on residual-free bubbles for advective-diffusive equations. Comput Methods Appl Mech Engrg, 1998, 166:25-33
  • 9Brezzi F, Russo A. Choosing bubbles for advection-diffusion problems. Math Models Meth Appl Sci, 1994,4:571-587
  • 10Brooks A N, Hughes T J R. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Engrg, 1982, 32:199-259

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部