期刊文献+

DECOMPOSITIONS OF BOSONIC MODULES OF LIE ALGEBRAS W_(1+∞) AND W_(1+∞)(gl_N) 被引量:2

DECOMPOSITIONS OF BOSONIC MODULES OF LIE ALGEBRAS W_(1+∞) ANDW_(1+∞)(gl_N)
原文传递
导出
摘要 A bosonic construction (with central charge c = 2) of Lie algebras W1+∞ and W1+∞ (glN), as well as the decompositions into irreducible modules are described. And for W1+∞, when restricted to its Virasoro subalgebra Vir, a bosonic construction and the same decomposition for Vir are obtained.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第4期633-642,共10页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China (No. 10431040, No.10271047, No.19731004) the Teaching and Research Award Program for Outstanding Young Teachers in Higher Education Institution of the Ministry of Education of China, the Specialized Research Fund for the Doctoral Program of Higher Education of the Ministry of Education of China, the Shanghai Rising-Star Program of the Science and Technology Commission of Shanghai and the Shanghai Priority Academic Discipline of the Education Commission of Shanghai.
关键词 Bosonic representation Virasoro algebra 玻色子表示法 李代数 Virasoro超代数 不可约模数
  • 相关文献

参考文献13

  • 1Feingold, A. J. & Frenkel, I. B., Classical affine Lie algebras, Adv. in Math., 56(1985), 117-172.
  • 2Frenkel, I. B., Spinor representations of afine Lie algebras, Proc. Natl. Acad. Sci. USA, 77(1980), 6303-6306.
  • 3Frenkel, I. B., Two constructions of affine Lie algebra representations and boson-fermion correspon dence in quantum field theory, J. Funct. Anal., 44(1981), 259-327.
  • 4Frenkel, E., Kac, V., Radul, A. & Wang, W., W1+∞ and W(glN) with central charge N, Comm. Math. Phys., 170(1995), 337-357.
  • 5Gao, Y., Representations of the extended affine Lie algebra coordinatized by certain quantum tori, Composito Mathematica, 132(2000), 1-25.
  • 6Gao, Y., Fermionic and bosonic representations of the extended affine Lie algebra glN(Cq), Canad. Math. Bull., 45:4(2002), 623-633.
  • 7Kac, V. G. & Peterson, D. H., Spin and wedge representations of infinfite dimensional Lie algebras and groups, Natl. Acad. Sci. USA, 78(1981), 3308-3312.
  • 8Kac, V. G. & Radul, A., Quasifinite highest weight modules over the Lie algebra of differential operatorson the circle, Comm. Math. Phys., 157(1993), 429-457.
  • 9Kac, V. G. & Raina, A., Highest Weight Representations of Infinite Dimensional Lie Algebras, Ad vanced Series in Math. Physics, Vol. 2, 1987.
  • 10Kassel, C., Cyclic homology of differential operators, the Virasoro algebra and a q-analogue, Comm.Math. Phys., 164(1992), 343-356.

同被引文献4

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部