摘要
证明如果在n×n棋盘的方格中每一格分别填入数1,2,…,n2(n 2),使得任意两个相邻的方格中的两数之差都不超过n,则相邻的方格中的两数之差恰等于n的方格对至少有2(n-1)对.
In this paper, the proposition is proved that if the numbers 1, 2, …, n^2 (n≥2) are filled in every square of n×n chessboard, with difference of two numbers in any consecutive squares below n, then at least 2(n=1) pairs of consecutive squares are got, in which the difference of two numbers is just equal to n.
出处
《杭州师范学院学报(自然科学版)》
CAS
2005年第5期353-355,共3页
Journal of Hangzhou Teachers College(Natural Science)
关键词
n×n棋盘
填数
相邻方格中两数之差
the n×n chessboard
fill numbers
difference of two numbers in consecutive squares