摘要
本文研究了一类带三阶粘性项的广义KdV-Burgers型方程的初边值问题.运用Galerkin逼近方法,结合能量估计,得到了问题整体解的存在性,正则性,唯一性和稳定性等结果.并在一定条件下讨论了问题的解的渐近行为和“爆破”现象.
This paper considers the initial-boundary value problem for the generalized KdV-Burgers equations with the third order viscous term. The existence and uniqueness of the global solution for the problem are proved by means of a priority estimation and the Galerkinmethod. The asymptotic behavior and 'blow up' Phenomenon of the solution for the problem are inverstigated under certain conditions.
出处
《应用数学》
CSCD
北大核心
1996年第2期166-171,共6页
Mathematica Applicata
关键词
初边值问题
整体解
爆破
KDV-B方程
存在性
KdV-Burgers equation
Initial-boundary value problem
Global solution
Galerkin method,Energy estimation
Asymptotic behavior
Blow up