摘要
本文结果是:设A是φ-满射环R上的非拟纯量可逆n×n矩阵,βj,γj(尔≤j≤n)是R中任意元素,它们满足Πnj=1βjγj=detA,则存在n阶阵B和C满足PAP-1=BC,其中B是下三角阵,C是上三角阵,P∈GLn(R).进一步,可以取B使βj(1≤j≤n)位于B的主对角线上,同时可以取C使γj(1≤j≤n)位于C的主对角线上.
In this paper. we extend the main theorem in [1]. Our main result is :Let A be a non -near scalar invertible n×n matrix over φ-surjective ring R. Let βj and γj(1<j<n) be any elements of R such such that A. Then there exist n×n matrices B such C such that PAP-1=BC. is a lower triangular and C is simultaneously upper triangularizable P∈GLn (R). Furthermore B and C can be chosen so that the elements in the main diagonal line of B are B are β1…βn and of C are γ1…γn.