摘要
本文通过典型实例和理论分析证明了;在有势力作用下,对于非完整系统.Hamilton原理同样有像完整系统那样使Lagrange函数取驻值的形式;使Lagrange函数变分对时间积分为零的形式是前者的演变形式:因此,两种形式是统一的.
In this paper, by means of typical engilleering examples alld deep theortical analysis,we prove that: under the effect of conservative force, the Hamilton principles in holonomic systems have the same formula δ∫Ldt=0. The formula ∫δLdt=0 is an evolved form of the formula δ∫Ldt=0. Therefore, the taro formulas are unified.
出处
《应用数学和力学》
CSCD
北大核心
1996年第5期439-444,共6页
Applied Mathematics and Mechanics
关键词
非完整系统
完整系统
真空轨道
哈密顿原理
non-holonomic system. holonomic system, the Hamilton principle, actual trajectory, geodesic trajectory