利用广义D-间隙函数求解变分不等式问题的新进展
Some Recent Advances in Generalized D-gap Funtion-type Methods
摘要
变分不等式问题可以通过广义D_间隙函数转化为一个无约束最优化问题.对利用广义D_间隙函数求解变分不等式问题的知识进行了系统地归纳和总结.
It is well known that the variational inequality problem (VIP) can be reformulated as an unconstrained minization problem through the generalized D-gap function. The authors review and summarize recent developments in this class of methods.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2005年第4期1-5,共5页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金(10171055
10271002)
山东省自然科学基金(Y2003A02)
曲阜师范大学校基金(XJ03021)
关键词
变分不等式
广义D-间隙函数
性质
算法
收敛
variational inequality problem
generalized D-gap function
properties
algorithm
convergence
参考文献13
-
1Harker P T, Pang J S. Finite-dimentional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms and applications [J]: Mathematical Programming, 1990, 48:161 ~ 220.
-
2Fukushima M. Merit functions for variational inequality and complementarity problem [C]. In: Di Pillo G,Giannessi F, (eds.). Nonlinear Optimization and Applications [A]. New York: Plenum Press, 1996. 155 ~ 170.
-
3Peng J M. Equivalence of variational inequality problems to unconstrained optimization[J]. Mathematical Programming, 1997, 78:347~ 355.
-
4Yamaslita N, Taji K. Fukushima M. Unconstrained optimization reformulations of variational inequality problems. Journal of Optimization Theory and Applications, 1997, 92:439 ~ 456.
-
5Auslender A. Optimisation: methodesnumeriques [ M]. Paris: Masson, 1976.
-
6Auchmuty G. Variational principles for variational inequalities[J]. Numerical Functional Analysis and Optimization, 1989, 10:863~874.
-
7Fukushima M. Ecquivalent differentiable optimization problems and descent methods for asymmetric vatriational inequality problems [ J].Mathematical Programming, 1992,53:99 ~ 110.
-
8WU J H, Florian, M, M Arcotte P. A general descent framework for the monotone variational inequalityproblem [J]. Mathematical Programming, 1993, 61:281 ~ 300.
-
9Yamashita N, Fukushima M. Equivalent unconstrained minimization and global error bounds for variational inequality problems [J]. SIAM Journal on Control and Optimization, 1997, 35(1):273 ~ 284.
-
10Peng J M, Fukushima M. A yybrid Newton method for solving the variational inequality problem via the D-gap function. Mathematical Programming, 1999, 86:367~386.