摘要
本文基于Pi-Sigma神经网络,设计了一种针对水声回波信号的实时底质分类器,它具有运算快速、正确率高的特点,在海试中实现了实时底质分类,取得良好的分类结果。
This paper proposes a real-time sediment classifier for Echo-sounder signal based on the Pi-Sigma neural network method,which has the characteristics of high operation speed and high accuracy. During maritime experimentation. The classifier achieves real-time classification of seafloor sediments and obtains favorable results.
出处
《应用声学》
CSCD
北大核心
2005年第6期346-350,共5页
Journal of Applied Acoustics
基金
水声技术国防科技重点实验室基金项目资助