期刊文献+

线性微分多项式的几个定理 被引量:1

Some theorems for linear differential polynomials
下载PDF
导出
摘要 对Frank_Weissenborn不等式中导数f(k)能否替换成一般的线性微分多项式a0f+aεf′+akf(k)进行了研究,并彻底解决了这一问题,所建立的一个基本不等式蕴涵了著名的Frank_Weissenborn不等式.作为这一结果的应用,Hayman_Yang不等式及几个已有的结果也得到了推广.举例说明了所得定理的条件是必要的. In this article,we deal with the distribution of values of linear differential polynomials, and have solved completely the following question: In well-known s inequality, can the derivative be replaced by a general linear differential polynomial? As the solution of this question, Some obtained results are generalized. Some examples show that the conditions of theorems obtained in this paper are essential.
作者 杨力
出处 《西安工业学院学报》 2005年第4期381-386,共6页 Journal of Xi'an Institute of Technology
基金 陕西省教育厅专项科研计划项目(04JK127)
关键词 亚纯函数 微分多项式 零点 极点 meromorphic function differential polynomial zero pole
  • 相关文献

参考文献10

  • 1Hayman K.Meromorphic functions[J].Oxford:Clarendon Press,1964.
  • 2杨乐.精密的基本不等式与亏量和[J].中国科学(A辑),1990,21(2):113-133. 被引量:19
  • 3Hayman K.Picard values of meromorphic functions and their deviatives[J].Ann of Math,1959,70:9.
  • 4Frank G,Weissenborn.Rational deficient functions of meromorphic functions[J].Bull London Math Soc,1986,18:29.
  • 5Frank G,Weissenborn G.On the zeros of linear defferential polynomials of meromorphic functions[J].Complex Variables,1989,12:77.
  • 6Nevanlinna R.Le theoreme de Picard-Borel et la theoric des functions meromorphes[J].Paris,1929.
  • 7Milloux H.Les functions meromorphic et leurs derives[M].Paris,1940.
  • 8仪洪勋 杨重骏.亚纯函数惟一性理论[M].北京:科学出版社,1995..
  • 9Steinmetz N.Eine Verallgemeinerung des zeiten Nevanlinnaschen Hauptsatzes[J].J Reine Angew Math,1986,368:134.
  • 10Polya G,Szego G.Aufgaben Und lehrsatze aus der analysis,Ⅱ[M].New York:Berlin-Heidelberg,1971.

共引文献26

同被引文献3

  • 1Frank G,Weissenborn G. On the Zeros of Linear Dif- ferential Polynomials of Meromorphic Functions, Complex Variables, 1989,12: 77.
  • 2YANG Li. Frank-weissenborn's Inequality for linear Differential Polynomials, Finite or Infinite Dimension- al Complex Analysis IMp. Jinan.. Shandong Science and Tehnology Press, 2001.
  • 3杨力.线性微分多项式的零点与极点[J].数学学报(中文版),2008,51(3):571-578. 被引量:3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部