期刊文献+

基于线性矩阵不等式的广义神经网络系统的全局渐近稳定性分析 被引量:4

LMI-Based Approach for Globally Asymptotic Stability Analysis of Generalized Delayed Neural Network
下载PDF
导出
摘要 首先讨论了同时具有离散时滞和分布时滞的神经网络系统即广义神经网络系统平衡点的存在性,然后通过构造Lyapunov-Kra-sovskii泛函并利用线性矩阵不等式的方法将系统的稳定性问题转化为凸优化问题,建立了系统全局渐近稳定的充分条件。该充分条件可利用标准的MatlabLMI工具箱来验证和求解。 This paper is devoted to the stability analysis of generalized delayed neural network with mixed discrete and distributed delays. We first prove the existence and uniqueness of the equilibrium point under mild conditions. Then, by employing the Lyapunov -Krasovskii function, the addressed stability analysis problem is converted into a convex optimization problem, and a linear matrix inequality (LMI) approach is utilized to establish the sufficient condition for the globally asymptotic stability. This condition can be readily checked by utilizing the Matlab LMI Toolbox.
出处 《淮阴工学院学报》 CAS 2005年第5期1-5,71,共6页 Journal of Huaiyin Institute of Technology
关键词 神经网络 线性矩阵不等式 稳定性 neural network linear matrix inequality stability
  • 相关文献

参考文献19

  • 1Arik S. (2000). Stability analysis of delayed neural networks. IEEE Transactions on Circuits Systems - I,47,1089 - 1092.
  • 2Baldi P. and Atiya A. F. (1994). How delays affect neural dynamics and learning. IEEE Transactions on Neural Networks,5,612 -621.
  • 3Cao J. (2000). Periodic oscillation and exponential stability of delayed CNNs. Physics Letters A ,270,157 - 163.
  • 4Liao X. F. , Chen G. and Sanchez E. N. (2002). LMI - based approach for asymptotically stability analysis of delayed neural networks.IEEE Transactions on Circuits Systems - I,49, 1033 - 1039.
  • 5Joy M. P. (199b). On the global convergence of a class of functional differential equations with applications in neural network theory. Journal of Mathematical Analysis and Applications,232,61 - 81.
  • 6Joy M. P. (2000a). Results concerning the absolute stability of delayed neural networks. Neural Networks,13,613 -616.
  • 7Liao X. F. , Wong K. W. , Leung C.S. and Wu Z. F. (2001). Hopf bifurcation and chaos in a single delayed neuron equation with nonmonotonic activation function. Chaos, Solitons and Fractals, 12,1535 - 1547.
  • 8Van den Driessche P. and Zou X. (1998). Global attractivity in delayed Hopfield neural networks model. SIAM Journal of Applied Mathematics,58, 1878 - 1890.
  • 9Wang Z. , Ho D. W. C. and Liu X. (2004). State estimation for delayed neural networks. IEEE Transactions on Neural Networks, accepted for publication.
  • 10Zhang Y. (1996). Global exponential stability and periodic solutions of delay Hopfield neural networks. International Journal of System Sciences,27,227 - 231.

同被引文献43

  • 1陈武华,卢小梅,李群宏,关治洪.随机Hopfield时滞神经网络均方指数稳定性:LMI方法[J].数学物理学报(A辑),2007,27(1):109-117. 被引量:9
  • 2Song Q K, Wang Z D. A delay-dependent LMI approach to dynamics analysis of discrete-time recurrent neural networks with timevarying delays [J]. Physics Letters A, 2007, 368: 134- 145.
  • 3Chen L, Zhao H Y. New LMI conditions for global exponential stability of cellular neural networks with delays [J]. Nonlinear Analysis: Real World Applications, 2009, 10: 287-297.
  • 4Liu Y R, Wang Z D, Liu X H. On global exponential stability of generalized stochastic neural networks with mixed time-delays [J]. Neurocomputing, 2006, 70: 314-326.
  • 5Wang Z D, Stanislao Lauria, Fang J A, Liu X H. Exponential stabihty of uncertain stochastic neural networks with mixed time- delays [J]. Chaos, Solitons and Fractals, 2007, 32: 62- 72.
  • 6Y.He, M.Wu, J.H.She, G.P.Liu. Delay Dependent Robust Stability Criteria for Uncertainty Neutral Systems with Mixed Delays. Systems and control letters, 2004,51 :57-65.
  • 7Q.L.Han. On Stability of Linear Neutral Systems with Mixed Time Delays: A Discretized Lyapunov Functional Approach, Autornatica, 2005, 41: 1209-1218.
  • 8L. Wan, J. H. Sun. Global Asymptotic Stability of Cohen-Grossberg Neural Networks with Continuously Distributed Delays. Phys. Lett. A, 2005,342(4): 331-340.
  • 9H, J. Jiang, J. D. Cao, Z. D. Teng. Dynamics of Cohen-Grossberg Neural Networks with Time-varying Delays. Phys. Lett. A, 2006,354(5-6): 414-422.
  • 10W R. Zhao, Y. Tan. Harmless Delays for Global Exponential Stability of CohenGrossberg Neural Networks Mathematics amd Computers in Simulation, 2007, 74(1):47-57.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部