摘要
基于Web的数据挖掘是一种结合了数据挖掘和互联网系统的热门研究课题。本文首先综述了基于Web的几类数据挖掘技术,包括Web内容挖掘、Web的访问挖掘、Web页面聚类以及用户频繁访问路径发现等技术。在此基础上又着重介绍了Web数据挖掘技术在电子商务中的具体应用。
With the growing popularity of the World Wide Web, large volumes of data such as user address or URL requested are gathered automatically by Web servers and collected in access log files. Discovering relationships and global patterns that exist in such files can provide significant and useful information. In this paper, we firstly introduce some data mining techniques such as association rules or sequential patterns on access log files. Once interesing patterns are discovered, we illustrate how they can be used for performance enhancement, restructuring a Web site for increased effectiveness, and customer targeting in electronic commerce.
出处
《电脑知识与技术》
2005年第11期18-20,共3页
Computer Knowledge and Technology
基金
国家自然科学基金项目(60346002)。