期刊文献+

移动最小二乘无网格方法 被引量:1

Moving Least Square Meshless Method
下载PDF
导出
摘要 介绍移动最小二乘法的基本原理和近似函数的构造方法,并应用配点法和最小二乘原理,提出了一种基于移动最小二乘思想的最小二乘配点型无网格方法。该方法的实施不需要背景网格,不需要进行高斯积分,具有计算量小、边界条件处理简单的特点,是一种真正的无网格方法。 The basic principle of moving least square method and approximate function structure method were introduced. Using point collocation method and the principle of moving least square method, one moving least square & point collocation meshless method based on moving least square thought was proposed. The implementation of this method does not need background mesh, does not need to carry on Gauss integral. The characteristic of this method is small in calculating amount and simple in boundary condition processing, which is a true meshless method.
出处 《辽宁工学院学报》 2005年第5期321-323,共3页 Journal of Liaoning Institute of Technology(Natural Science Edition)
关键词 无网格方法 移动最小二乘法 配点法 最小二乘原理 meshless method moving least square method point collocation method principle of least square method
  • 相关文献

参考文献4

二级参考文献33

  • 1秦荣.样条有限点法[J].数值计算与计算机应用,1981,(2):68-81.
  • 2Belytschko T, Krongauz Y et al. Meshless methods: An overview and recent developments. Comput Meth Appl Mech Eng, 1996, 139:3~47
  • 3张雄,宋康祖,陆明万.无网格法研究进展及其应用.见:袁明武,孙树立编.工程与科学中的计算力学.北京:北京大学出版社,2001. 112-121 (Zhang Xiong, Song Kangzu, Lu Mingwan.Research progress and application of meshless method. In:Yuan Mingwu, Sun Shuli, eds. Computational Mechanics in Engineering and Science, Beijing: Peking University Press, 2001. 112-121 (in Chinese))
  • 4Lucy LB. A numerical approach to the testing of the fission hypothesis. The Astron J, 1977, 8(12): 1013~1024
  • 5Gingold RA, Moraghan JJ. Smoothed particle hydrodynamics: Theory and applications to non-spherical stars.Mon Not Roy Astrou Soc, 1977, 18:375~389
  • 6Liu WK, Jun S, Zhang YF. Reproducing kernel particle methods. Int J Numer Meth Fluids, 1995, 20:1081~1106
  • 7Liu WK, Chen Y. Wavelet and multiple scale reproducing kernel method. Int J Numer Methods Fluids, 1995, 21:901~931
  • 8Nayroles B, Touzot G, Villon P. Generalizing the finite element method: Diffuse approximation and diffuse elements.Comput Mech, 1992, 10:307~318
  • 9Belytschko T, Lu YY, Gu L. Element free Galerkin methods. Int J Numer Methods Engrg, 1994, 37:229~256
  • 10Onate E, Idelsohn S, Zienkiewicz OC, et al. A finite point method in computational mechanics: Applications to convective transport and fluid flow. Int J Numer Methods Engr, 1996, 39:3839~3866

共引文献85

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部