期刊文献+

非线性抛物型微分包含积分解的生存性及正则性

Existence and regularity of integral solutions for nonlinear parabolic differential inclusions
下载PDF
导出
摘要 研究Banach空间中受极小映射扰动的非线性抛物型微分包含积分解的生存性及正则性.利用非线性半群及极小映射的性质和不动点定理,证明其积分解的生存性,获其积分解之间按Housdorff距离的连续性.借助Lip-schitz条件、绝对连续函数的性质及Banach空间的自反严格凸性,获其积分解的唯一性且是强解.所获结果对受此类微分包含约束的分布参数最优控制问题的探讨奠定理论基础,同时有助于研究相关的非线性微分包含。 Existence and regularity of integral solutions are studied for nonlinear parabolic differential inclusions involving a m-dissipative operator and minimal mappings in Banach spaces. The existence is proved through nonlinear semigroup, properties of minimal mappings and fixed-point theorems, while continuity of the solutions is examined in the sense of Housdorff distance. On the other hand, uniqueness of integral solution and its regularity are obtained by means of Lipachitz conditions, properties of absolute continuous mappings, reflexivity and strict convexity of Banach spaces. All results acquired not only help solve distribution parameter optimal control problems subject to the differential inclnsions, but also study the problems of other differential inclusions.
作者 张著洪
机构地区 贵州大学数学系
出处 《贵州师范大学学报(自然科学版)》 CAS 2005年第4期64-68,共5页 Journal of Guizhou Normal University:Natural Sciences
基金 贵州大学自然科学基金(200101007)
关键词 集值映射 微分包含 非线性半群 m-耗散算子 set-valued mapping differential inclusion nonlinear semigroup m-dissipative operator
  • 相关文献

参考文献10

  • 1Frankowska H. Estimation a priori pour les inclusions differentielles operationelles[J]. CR Acad Sci Paris, 1989, 308(5):47-50.
  • 2Xue X, Song G. Existence results of mild solutions to semlinear evolution inclusions in Banach spaces [J]. Northeast Math J, 1995, 11(7):151-156.
  • 3Vrabie V V. Some compactness methods in the theory of nonlinear evolution equations to P .D. E. [J]. Banach Centre Publ, 1987, 19(7):351-360.
  • 4Wang Zhihua. Properties of solutions and their set for parabolic evolution differential inclusions [J]. Application mathematics and mechanics, 1000-0887(1999)03-0314-18, Chinese.
  • 5Wang Zhihua. Extremal solutions of nonlinear differential inclusions [J]. Annals of mathematics,1998,19A(4):417-422, Chinese.
  • 6Papageorgiou N S. Extremal solutions of evolution inclusions associated with time dependent convex subdifferentials[J]. Nachr.,1992,158:219-232.
  • 7Barbu V. Nonlinear semigroup and differential equations in Banach space [M].Chengdu:Sichuan University Publishing House, 1987.
  • 8Aubin J P, Frankowska H. Set-Valued Analysis, System and Control: Foundations and Applications [M].Birkhser,Boston,Basel,Berlin,1990.
  • 9Papageorgiou N S. On the existence of optimal controls for a class of nonlinear infinite dimensional systems [J].Math, Nachr.1991:150,203-217.
  • 10Papageorgiou N S. Nonnmonotone, Nonlinear evolution inclusions[J].Mathematical and computer modeling,2000,32:1345-1365.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部