摘要
利用弱拟正规子群概念,经推导得到有限群超可解的几个充分条件.若有限群G满足下列任意一个条件:(1)G的一个极大且循环的子群M在G中弱拟正规;(2)G的一个具有素数幂指数的子群M的Sylow子群及它的Sylow子群的极大子群在G中弱拟正规;(3)G可解,且G的一个极大正规子群M的极大子群在G中弱拟正规;(4)G可解,G的Sylow子群的循环子群在G中弱拟正规;(5)G可解,G的Sylow子群的极大子群在G中弱拟正规;(6)G=AB,A∈Hallπ(G),B∈Hallπ′(G),且A与B的Sylow子群均在G中弱拟正规,则G超可解.
The main purpose of the present paper is to prove the following some theorems: for a finite groupG , if G satisfies one of the following conditions, then G is supersolvable; (1) A maximal and cyclic subgroup of G is weakly quasi-normal in G. (2) All Sylow subgroups and all maximal subgroups of Sylow subgroups of a subgroup which has index power of a prime of G are weakly soluble quasi-normal in G. (3) All maximal subgroups of a maximal subgroup of G which is are weakly quasi-normal in G. (4) All cyclic subgroups of Sylow subgroups of G which is soluble are weakly quasi-normal in G. (5) All maximal subgroups of is soluble are weakly quasi-normal in G. (6) Let G be the products of A which is a Hall - π subgroup of G and B a Hall -π' subgroup. All Sylow subgroups of A and B are weakly quasi- normal in G.
出处
《江南大学学报(自然科学版)》
CAS
2005年第5期545-547,共3页
Joural of Jiangnan University (Natural Science Edition)
基金
江苏省高校自然科学研究计划项目(03KJB110002)资助课题
关键词
弱拟正规
外超可解
极大子群
超可解
weakly quasi-normal~ outer-supersoluable
maximal subgroup
super-soluable