摘要
建立考虑横向剪切与转动惯量影响的短形板的动力控制方程,应用Galerkin方法将其化为Mathieu方程,然后根据Lyapunov-Schmidt方法得到了系统在参数激励下的1/2亚谐分叉特性;并给出了四边简支与四边团支弹性薄板的非线性动力屈曲分叉条件.
In this paper,a system of dynamic equations of rectangular plates including the effects of transverse shear deformation and rotatory inertia is derived.By using the Galerkin procedure the dynamic equations are reduced to a system of the Mathieu equations.The characteristic of 1/2 sub-harmonic bifurcation is discussed for the parametrically excited system with a help of the Lyapunov-Schmidt method.The bifurcation conditions for rectangular plates with all edges simply supported and clamped are obtained.
出处
《固体力学学报》
CAS
CSCD
北大核心
1996年第2期145-150,共6页
Chinese Journal of Solid Mechanics
基金
国家自然科学基金
国家教委留学生基金
机械部科研基金
关键词
中厚矩形板
非线性
动力屈曲
分叉
厚板
rectangular moderate-thick plate
non-linearity
dynamic buckling and bifurcation