期刊文献+

Tin Oxide and Carbon Composite (Sn_6O_4(OH)_4 /AG) as the Anode in a Lithium Ion Battery

Tin Oxide and Carbon Composite (Sn_6O_4(OH)_4 /AG) as the Anode in a Lithium Ion Battery
原文传递
导出
摘要 A tin oxide and carbon composite (Sn6O4(OH)4/AG) with a Sn content of 0.15-0.30 was prepared by chemical deposition at normal pressures and temperatures. The structures of the artificial graphite (AG), the Sn6O4(OH)4, and the Sn6O4(OH)4JAG were analyzed using X-ray diffraction. The electrochemical lithiation was investigated by measuring the galvanostatic charge and discharge ratio. The electrochemical capacities of the three materials during the first discharge were 310 mAh/g (AG), 616 mAh/g (Sn6O4(OH)4/AG), and 1090 mAh/g (Sn6O4(oa)4). The discharge capacity of the Sn6O4(OH)4/AG was larger than the simple sum of the capacities provided by AG and Sn6O4(OH)4 with the same content. The cyclic performance of Sn6O4(OH)4/AG was also better than that of Sn6O4(OH)4 for voltages of 0 to 3 V. The results imply that the interaction between Sn and C in Sn6O4(OH)4/AG is very strong and effectively inhibits the volume expansion of the Sn. A tin oxide and carbon composite (Sn6O4(OH)4/AG) with a Sn content of 0.15-0.30 was prepared by chemical deposition at normal pressures and temperatures. The structures of the artificial graphite (AG), the Sn6O4(OH)4, and the Sn6O4(OH)4JAG were analyzed using X-ray diffraction. The electrochemical lithiation was investigated by measuring the galvanostatic charge and discharge ratio. The electrochemical capacities of the three materials during the first discharge were 310 mAh/g (AG), 616 mAh/g (Sn6O4(OH)4/AG), and 1090 mAh/g (Sn6O4(oa)4). The discharge capacity of the Sn6O4(OH)4/AG was larger than the simple sum of the capacities provided by AG and Sn6O4(OH)4 with the same content. The cyclic performance of Sn6O4(OH)4/AG was also better than that of Sn6O4(OH)4 for voltages of 0 to 3 V. The results imply that the interaction between Sn and C in Sn6O4(OH)4/AG is very strong and effectively inhibits the volume expansion of the Sn.
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2005年第5期554-560,共7页 清华大学学报(自然科学版(英文版)
关键词 electrochemical lithiation artificial graphite Sn-based material electrochemical lithiation artificial graphite Sn-based material
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部