摘要
When IC technology is scaled into the very deep sub-micron regime, the optical proximity effects (OPE) turn into noticeable in optical lithography. Consequently, clock skew becomes more and more susceptible to process variations, such as OPE. In this paper, we propose a new buffered clock tree routing algorithm to prevent the influence of OPE and process variations to clock skew. Based on the concept of BSF (branch sensitivity factor), our algorithm manages to reduce the skew sensitivity of the clock tree in the topology generation. The worst case skew due to the wire width change has been estimated, and proper buffers are inserted to avoid large capacitance load. Experimental results show that our algorithm can produce a more reliable, processinsensitive clock tree, and control clock skews in their permissible range evidently.
When IC technology is scaled into the very deep sub-micron regime, the optical proximity effects (OPE) turn into noticeable in optical lithography. Consequently, clock skew becomes more and more susceptible to process variations, such as OPE. In this paper, we propose a new buffered clock tree routing algorithm to prevent the influence of OPE and process variations to clock skew. Based on the concept of BSF (branch sensitivity factor), our algorithm manages to reduce the skew sensitivity of the clock tree in the topology generation. The worst case skew due to the wire width change has been estimated, and proper buffers are inserted to avoid large capacitance load. Experimental results show that our algorithm can produce a more reliable, processinsensitive clock tree, and control clock skews in their permissible range evidently.
基金
the 863 National Hi-Tech Research and Development Plan of China(Grant No.2005AA1Z1230)
the National Natural Science Foundation ofChina(Grant No.90307017).