期刊文献+

金云母中Alpha反冲径迹的蚀刻和退火行为

Etching and Annealing Behaviors of Alpha Recoil Tracks in Phlogopite
下载PDF
导出
摘要 矿物中U、Th及其子核进行α衰变释放出α粒子时,剩余重核受到反冲而产生辐射损伤。在适当的条件下经化学蚀刻,这些辐射损伤成为在相干涉反差显微镜下可观测的核径迹。实验证明,蚀刻过程中,Alpha反冲径迹(ARTs)增长数和蚀刻时间成线性关系,随蚀刻时间增加,线性被破坏,最终达到一个“坪”。退火过程表明,Alpha反冲径迹的退火要比裂变径迹的退火容易,其退火率随退火时间的增长和温度的升高而增加,且温度对其影响显著,在350℃下加热样品20h,退火率达到90%左右,在400℃下加热4h,完成全退火。 When U and Th as well as their daughter nuclei emit aparticles afteradecays, the heavy residual nuclei are recoiled, leaving behind a trail of radiation damage in the mineral. The trail of radiation damage becomes a nuclear track when it is etched by chemical reagent under proper etching conditions. Then it can be observed under the phase-contrast interference microscope. It is proved that the number of ARTs increases linearly with the etching time during the initial etching process. With the increase of the etching time, the linearity is destroyed, and finally reaches a “plateau”. ARTs are annealed much more easily than fission tracks, as can be observed from the annealing process of ARTs. The annealing ratio increases with both annealing time and temperature, with the temperature exerting an obvious effect on it. It reaches 90% when the sample is heated for 20 hours under 350℃, and 100% when the sample is heated for 4 hours at 400℃.
出处 《地球学报》 EI CAS CSCD 北大核心 2005年第B09期262-266,共5页 Acta Geoscientica Sinica
基金 本文由国家自然科学基金项目(编号:40072068,10175076,10475093) 国家重点基础研究发展规划项目(编号:2001CB409804)资助.
关键词 Alpha反冲径迹 金云母 蚀刻行为 退火行为 ALPHA 化学蚀刻 核径迹 反冲 退火时间 辐射损伤 Alpha recoil track phlogopite etching behavior annealing behavior
  • 相关文献

参考文献22

  • 1Fleischer R L. 1980. Nuclear track production in solids. General Electric Rept No. 80CRD128, 1 and Progress in Materials Science (1981), Chalmers Anniversary Volume, Pergamon press, Oxford.
  • 2Fleischer R L, Price P B,Walker R M. 1965. Nuclear tracks in solids: principle and applications. University of California Press, Berkeley, 209-211.
  • 3Gentry R V. 1968. Fossil alpha-recoil analysis of certain variant radioactive halos. Science, 160 : 1228- 1230.
  • 4Glasrnacher U A, Lang M, Klemme Set al. 2003. Alpha-recoil tracks in natural dark mica: dating geological samples by optical and scanning force microscopy, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 209: 351-356.
  • 5Goegen K, Jonckheere R C, Wagner G A. 1998. On the dimensions and densities of etched and latent alpha-recoil tracks, Abstract, 19^th Internat. Conf. on Nuclear Tracks in Solids, Besancou, 805.
  • 6Haack Udo. 1977. The closing temperature for fission track retention in minerals. Am. J. Sci,277: 459-464.
  • 7Hashemi- Nezhad S R, Fremlin J H, Durrani S A. 1979. Polonium haloes in mica. Nature, 278: 333-335.
  • 8Hashemi-Nezhad S R,Durrani S A. 1981a. Registration of alpha-recoil tracks in mica: the prospect for alpha-recoil dating method. Nucl Tracks, 5 : 189-205.
  • 9Hashemi-Nezhad S R, Durrani S A. 1981b. Correction of thermally lowered fission-track ages of minerals and glasses: the importance of the prolonged etching factor. Nucl. Tracks, 5: 101-111.
  • 10Hashimoto T, Sugiyama H, Sotobayashi T. 1980. Alpha-recoil track formation on muscovite and measurement of recoil-range using 232Cf sources: Nucl. Tracks, (4): 263-269.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部