摘要
In this paper, according to the features of easy distortion and scratch for aspheric plastic lens, a noncontact measuring method is raised to test error in shape of the lens. Namely, the distance between a template and its image reflected with tested lens can be measured in nearly the vertical direction of the lens axis when the two-dimensional (2D) template is put near the measured surface. Then, the outline of the central cross-section could be obtained by calculating and curve fitting. Furthermore, three-dimensional (3D) surface can be imitated through rotating the component. A new fitting method of drift measurement is presented to prevent reducing precision when the lens and the template are fixed. The template is adjusted according to the position of the lens. The measurement precision is in the order of magnitued of sub-microns. Rotationally symmetric convex aspheric surface with any angle can be measured by this method.
In this paper, according to the features of easy distortion and scratch for aspheric plastic lens, a noncontact measuring method is raised to test error in shape of the lens. Namely, the distance between a template and its image reflected with tested lens can be measured in nearly the vertical direction of the lens axis when the two-dimensional (2D) template is put near the measured surface. Then, the outline of the central cross-section could be obtained by calculating and curve fitting. Furthermore, three-dimensional (3D) surface can be imitated through rotating the component. A new fitting method of drift measurement is presented to prevent reducing precision when the lens and the template are fixed. The template is adjusted according to the position of the lens. The measurement precision is in the order of magnitued of sub-microns. Rotationally symmetric convex aspheric surface with any angle can be measured by this method.
基金
This work was supported by the National Natural Sci-ence Foundation of China under Grant No. 59875066.