摘要
给出了计算定积分的Newton-Leibniz公式的推广:把f(x)在[a,b]上连续减弱为f(x)在[a,b]上可积,把F’(s)=f(x)在[a,b]上成立减弱为在[a,b]上除有限个点外成立F’(x)=f(x).同时建立了计算广义积分与二重积分的Newton-Leibniz公式.
This paper provides the extension of Newton--Leibniz's formula for calculating definite integral - continuously reducing f( x) on [a, b] into integrability of f( x) on [a, b] and the tenability of F'(x)=f(x) on [a,b] into the tenability of F'(x)=f(x) on [a,b] except a limited number of points, and meanwhile establishes Newton-Leibniz's formula for calculating improper integral and double integral.
出处
《陇东学院学报(自然科学版)》
2005年第2期1-2,共2页
Journal of Longdong University:Natural Science Edition