期刊文献+

Quasidiagonal Extension of AT-algebras

Quasidiagonal Extension of AT-algebras
下载PDF
导出
摘要 Let A and B be C^*-algebras. An extension of B by A is a short exact sequence O→A→E→B→O. (*) Suppose that A is an AT-algebra with real rank zero and B is any AT-algebra. We prove that E is an AT-algebra if and only if the extension (*) is quasidiagonal. Let A and B be C^*-algebras. An extension of B by A is a short exact sequence O→A→E→B→O. (*) Suppose that A is an AT-algebra with real rank zero and B is any AT-algebra. We prove that E is an AT-algebra if and only if the extension (*) is quasidiagonal.
作者 王春鹏 刘欣
出处 《Northeastern Mathematical Journal》 CSCD 2005年第3期365-370,共6页 东北数学(英文版)
关键词 AT-algebra real rank zero stable rank one quasidiagonal extension AT-algebra, real rank zero, stable rank one, quasidiagonal extension
  • 相关文献

参考文献8

  • 1Blackadar, B., K-theory for Operator Algebras, Math. Sci. Res. Inst. Publ., New York, 1998.
  • 2Brown, L. G., Extensions of AF Algebras: The Projection Lifting Problem, Proc. Sympos. Pure Math. 38, Amer. Math. Soc., Providence, RI, 1982.
  • 3Lin Huaxin and Rordam, M., Extensions of inductive limit of circle algebras, J. London Math.Soc., 51(2)(1995), 603-613.
  • 4Elliott, G. A., On the classification of C^*-algebras of real rank zero, J. Reine. Angew. Math.,443(1993), 179-219.
  • 5Lin Huaxin, An Introduction to the Classification of Amenable C^*-algebras, World Sci., Singapore, 2001.
  • 6Brown, L. G. and Pedersen, K., C^*-algebras of real rank zero, J. Funct. Anal., 99(1991), 131-149.
  • 7Brown, L. G. and Dadarlat, M., Extension of C'-algebras and quasiagonality, J. London Math.Soc., 53(2)(1996), 582-600.
  • 8Davison, K. R., C^*-algebra by Example, Amer. Math. Soc., Providence, RI, 1996.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部