Quasidiagonal Extension of AT-algebras
Quasidiagonal Extension of AT-algebras
摘要
Let A and B be C^*-algebras. An extension of B by A is a short exact sequence O→A→E→B→O. (*) Suppose that A is an AT-algebra with real rank zero and B is any AT-algebra. We prove that E is an AT-algebra if and only if the extension (*) is quasidiagonal.
Let A and B be C^*-algebras. An extension of B by A is a short exact sequence O→A→E→B→O. (*) Suppose that A is an AT-algebra with real rank zero and B is any AT-algebra. We prove that E is an AT-algebra if and only if the extension (*) is quasidiagonal.
参考文献8
-
1Blackadar, B., K-theory for Operator Algebras, Math. Sci. Res. Inst. Publ., New York, 1998.
-
2Brown, L. G., Extensions of AF Algebras: The Projection Lifting Problem, Proc. Sympos. Pure Math. 38, Amer. Math. Soc., Providence, RI, 1982.
-
3Lin Huaxin and Rordam, M., Extensions of inductive limit of circle algebras, J. London Math.Soc., 51(2)(1995), 603-613.
-
4Elliott, G. A., On the classification of C^*-algebras of real rank zero, J. Reine. Angew. Math.,443(1993), 179-219.
-
5Lin Huaxin, An Introduction to the Classification of Amenable C^*-algebras, World Sci., Singapore, 2001.
-
6Brown, L. G. and Pedersen, K., C^*-algebras of real rank zero, J. Funct. Anal., 99(1991), 131-149.
-
7Brown, L. G. and Dadarlat, M., Extension of C'-algebras and quasiagonality, J. London Math.Soc., 53(2)(1996), 582-600.
-
8Davison, K. R., C^*-algebra by Example, Amer. Math. Soc., Providence, RI, 1996.