摘要
A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can generate the 250 kg vertical suspension force. Three dimensional FEM and Design Sensitivity Analysis using the levitation gap length and cross sectional dimensions of the HTS magnets as design parameters were conducted to obtain the optimal shape of the cross section and the configuration of the HTS magnet. It was found that the gap length when optimized HTS magnet was used was much larger than that when copper conductor magnet was used, while the HTS coil volume was minimum, and the perpendicular field along the outer surface of the HTS coil was less than 0.12 T.
A new electromagnetic suspension model using a combination of high temperature superconductors (HTS) and copper conductors is proposed in this paper. A feasibility study showed that the magnets of our model can generate the 250 kg vertical suspension force. Three dimensional FEM and Design Sensitivity Analysis using the levitation gap length and cross sectional dimensions of the HTS magnets as design parameters were conducted to obtain the optimal shape of the cross section and the configuration of the HTS magnet. It was found that the gap length when optimized HTS magnet was used was much larger than that when copper conductor magnet was used, while the HTS coil volume was minimum, and the perpendicular field along the outer surface of the HTS coil was less than 0.12 T.
基金
Project (No. 50477030) supported by the National Natural Science Foundation of China