期刊文献+

Z_p^r上的polyadic码 被引量:2

Polyadic Codes over Z_p^r
下载PDF
导出
摘要 设G为有限阿贝尔群, 群环Zp[G]中的理想称为Zpr 上的阿贝尔码, 其中Zpr 为模pr 剩余类环. 对G的任意子集X,由离散Fourier变换和根定义Zpr [G]中的一个理想IX. 对于G的m-劈分(X∞,X0,X1,…,Xm-1,定义4类码. 这些码中的任一个码都称为Zpr [G]中的m-adic码(polyadic码). 从而把polyadic 阿贝尔码从有限域上推广到Zpr 上,然后给出了环Zpr } 上polyadic阿贝尔码的性质及存在的条件. Let G be a finite Abelian group, an ideal in the groupring Zp^r [G] is called an Abelian code over Zp^r, where Zp^r, is the ring of integers modulo p^r. For any subset X of G , an ideal IX in Zp^r EG-1 is defined by means of discrete Fourier transformant zeros. For an m- splitting of G , 4 classes codes are defined. Any of these codes is called an m -adic codes(polyadic codes). Thus polyadic Abelian codes over finite fields are generalized to over the ring Zp^r . Properties and existent conditions for polyadic Abelian codes over Zp^r are then presented.
出处 《泉州师范学院学报》 2005年第2期1-5,共5页 Journal of Quanzhou Normal University
基金 国家自然科学基金(天元基金) 资助项目(10226028) 福建省自然科学基金资助项目(F0310009)
关键词 阿贝尔码 m-劈分 m-adic码 Abelian code m-splitting m-adic code
  • 相关文献

参考文献7

  • 1Leon S,Pless V. Duadic codes[J]. IEEETrans. Inform. Theory, 1984,(30):709-714.
  • 2Smid M. Duadic codes [J]. IEEE Trans. Inform. Theory, 1987,(33):432-433.
  • 3Rushan J J. Duadic codes and difference sets[J]. J. Combin. Theory, Ser. A, 1991,(57):254-261.
  • 4Pless V,Rushan J J. Triadic codes[J]. Linear Alg. Appl. , 1988,(98) : 415-433.
  • 5Bruaildi R A, Pless V. Polyadic codes[J]. Disc. Appl. Math. , 1989,(25) : 3-17.
  • 6Ling S, Xing C P. Polyadic codes revisited[J]. IEEE Trans. Inform. Theory, 2004,(50):200-207.
  • 7Langevin P, Sole P. Duadic Z4 -codes[J]. Finite Fields and Their Applications,2000,6(4):309-326.

同被引文献8

  • 1Langevin P,Sole P.Duadic Z4-codes[J].Finite Fields Their Appl,2000,6(4):309-326.
  • 2Ling S,Sole P.Duadic Codes Over F2+uF2[J].IEEE Trans on Inform Theory,2001,47:1581-1589.
  • 3Ding C S,Kohel D R,Ling S.Split Group Codes[J].IEEE Trans on Inform Theory,2000,40(2):485-495.
  • 4Leon S,Pless V.Duadic Codes[J].IEEE Trans on Inform Theory,1984,30:709-714.
  • 5Pless V,Rushanan J J.Triadic Codes[J].J Combin Theory,Ser A 1991,57:254-261.
  • 6Brualdi R A,Pless V.Polyadic Codes[J].Disc Appl Math,1989,25:3-17.
  • 7Ling S,Xing C P.Polyadic Codes Revisited[J].IEEE Trans on Inform Theory,2004,50:200-207.
  • 8Ding C S,Pless V.Cyclotomy and Duadic Codes of Prime Lengths[J].IEEE Trans on Inform Theory,1999,45:453-466.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部