期刊文献+

Von Neumann Entropy of an Electron in One-Dimensional Determined Potentials

Von Neumann Entropy of an Electron in One-Dimensional Determined Potentials
下载PDF
导出
摘要 By using the measure of von Neumann entropy, we numerically investigate quantum entanglement of an electron moving in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. The delocalized and localized eigenstates can be distinguished by von Neumann entropy of the individual eigenstates.There are drastic decreases in von Neumann entropy of the individual eigenstates at mobility edges. In the curve of the spectrum averaged von Neumann entropy as a function of potential parameter λ, a sharp transition exists at the metal-insulator transition point λc = 2. It is found that the von Neumann entropy is a good quantity to reflect localization and metal-insulator transition. By using the measure of von Neumann entropy, we numerically investigate quantum entanglement of an electron moving in the one-dimensional Harper model and in the one-dimensional slowly varying potential model. The delocalized and localized eigenstates can be distinguished by von Neumann entropy of the individual eigenstates.There are drastic decreases in von Neumann entropy of the individual eigenstates at mobility edges. In the curve of the spectrum averaged von Neumann entropy as a function of potential parameter λ, a sharp transition exists at the metal-insulator transition point λc = 2. It is found that the von Neumann entropy is a good quantity to reflect localization and metal-insulator transition.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第11期2759-2762,共4页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant Nos 90203009 and 10175035, the Natural Science Foundation of Jiangsu Province of China under Grant No BK2001107, and the Excellent Young Teacher Program of the Ministry of Education of China.
关键词 ENTANGLEMENT SYSTEMS MODEL ENTANGLEMENT SYSTEMS MODEL
  • 相关文献

参考文献22

  • 1Schroedinger E 1935 Proc. Cambridge Philos. Soc. 31 555 Bell J S 1964 Physics 1 195.
  • 2Bouwmeester D, Ekert A and Zeilinger A 2000 The Physics of Quantum Information (Berlin: Springer).
  • 3Bennett C H et al 1996 Phys. Rev.A 53 2046.
  • 4Hill S and Wootters W K 1997 Phys. Rev. Lett. 78 5022.
  • 5O'Connor K M et al 2001 Phys. Rev. A 63 052302.
  • 6Osborne T J et al 2002 Phys. Rev. A 66 032110.
  • 7Osterloh A et al 2002 Nature 416 608.
  • 8Vidal G et al 2003 Phys. Rev. Lett. 90 227902.
  • 9Wang C Z et al 2005 Chin. Phys. Lett. 22 1829.
  • 10Gunlycke D et al 2001 Phys. Rev. A 64 042302.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部