摘要
Forward degenerate four-wave mixing (DFWM) processes are investigated with a femtosecond pulsed laser in lithium niobate crystal doubly-doped with magnesium and iron (LiNbO3:Fe, Mg). The pulse energy dependence reveals a pure third-order nonlinear response, and the third-order nonlinear susceptibility x^(3) in the material is evaluated to be 4.96 × 10^-13 esu. The time-resolved DFWM process shows a response time of x^(3) shorter than 100fs, which is due to the nonresonant electronic nonlinearities. Our results indicate that LiNbO3 crystals have potentials for ultrafast real-time optical processing systems, which require a large and fast x^(3) optical nonlinearity.
Forward degenerate four-wave mixing (DFWM) processes are investigated with a femtosecond pulsed laser in lithium niobate crystal doubly-doped with magnesium and iron (LiNbO3:Fe, Mg). The pulse energy dependence reveals a pure third-order nonlinear response, and the third-order nonlinear susceptibility x^(3) in the material is evaluated to be 4.96 × 10^-13 esu. The time-resolved DFWM process shows a response time of x^(3) shorter than 100fs, which is due to the nonresonant electronic nonlinearities. Our results indicate that LiNbO3 crystals have potentials for ultrafast real-time optical processing systems, which require a large and fast x^(3) optical nonlinearity.
基金
Supported by the National Natural Science Foundation of China under Grant No 60208003, and Alexander yon Humboldt Foundation.