期刊文献+

Time-Resolved Femtosecond Degenerate Four-Wave Mixing in LiNbO3:Fe,Mg Crystal

Time-Resolved Femtosecond Degenerate Four-Wave Mixing in LiNbO3:Fe,Mg Crystal
下载PDF
导出
摘要 Forward degenerate four-wave mixing (DFWM) processes are investigated with a femtosecond pulsed laser in lithium niobate crystal doubly-doped with magnesium and iron (LiNbO3:Fe, Mg). The pulse energy dependence reveals a pure third-order nonlinear response, and the third-order nonlinear susceptibility x^(3) in the material is evaluated to be 4.96 × 10^-13 esu. The time-resolved DFWM process shows a response time of x^(3) shorter than 100fs, which is due to the nonresonant electronic nonlinearities. Our results indicate that LiNbO3 crystals have potentials for ultrafast real-time optical processing systems, which require a large and fast x^(3) optical nonlinearity. Forward degenerate four-wave mixing (DFWM) processes are investigated with a femtosecond pulsed laser in lithium niobate crystal doubly-doped with magnesium and iron (LiNbO3:Fe, Mg). The pulse energy dependence reveals a pure third-order nonlinear response, and the third-order nonlinear susceptibility x^(3) in the material is evaluated to be 4.96 × 10^-13 esu. The time-resolved DFWM process shows a response time of x^(3) shorter than 100fs, which is due to the nonresonant electronic nonlinearities. Our results indicate that LiNbO3 crystals have potentials for ultrafast real-time optical processing systems, which require a large and fast x^(3) optical nonlinearity.
出处 《Chinese Physics Letters》 SCIE CAS CSCD 2005年第11期2831-2833,共3页 中国物理快报(英文版)
基金 Supported by the National Natural Science Foundation of China under Grant No 60208003, and Alexander yon Humboldt Foundation.
关键词 NONLINEAR OPTICAL SPECTROSCOPY TEMPORAL MEASUREMENTS PHASE-CONJUGATION SUSCEPTIBILITY HOLOGRAMS DYNAMICS NONLINEAR OPTICAL SPECTROSCOPY TEMPORAL MEASUREMENTS PHASE-CONJUGATION SUSCEPTIBILITY HOLOGRAMS DYNAMICS
  • 相关文献

参考文献19

  • 1Adibi A, Buse K and Psaltis D 1999 Opt. Lett. 24 652.
  • 2Liu Y W, Liu L R, Zhou C H and Xu L Y 2000 Opt. Lett.25 908.
  • 3Xu J J, Zhang X Z, Sun Q, Zhang G Q, Kamber N, Liu S M and Zhang G Y 1999 Chin. Phys. Lett. 16 29.
  • 4Grousson R and Mallick S 1980 Appl. Opt. 19 1762.
  • 5Bortz M L, Arbore M A and Fejer M M 1995 Opt. Lett. 2049.
  • 6Zhang G Q, Zhang W L, Sun Q, Xu J J, Zhang X Z, Liu S M and Zhang G Y 2000 Acta Opt. Sin. 20 597.
  • 7Yeh P 1989 IEEE J. Quantum -Electron. 25 484.
  • 8Yariv A, Oriov S S and Rakuljic G A 1996 J. Opt. Soc.Am. B 13 2513.
  • 9Buse K 1997 Appl. Phys. B 64 273.
  • 10Wynne J J 1972 Phys. Rev. Lett. 29 650.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部