期刊文献+

关于简化Newton方法收敛性的注记

A note on the convergence of the simplified Newton's method
下载PDF
导出
摘要 在假设算子方程解存在的前提下,给出了以解为中心的一个球域,证明了当初始点落到这个球域时,用于判断简化Newton方法收敛性的Kantorovich定理的条件必然满足,从而由简化Newton方法产生的迭代序列收敛. Under the supposition that there exists a solution for nonlinear operator equations, a ball with this solution as its center is given. We prove that only if initial point of the simplified Newton's method lies in this ball, all the conditions of the Kantorovich theorem for this method are satisfied, and the iteration sequence generated by this method converges.
出处 《杭州师范学院学报(自然科学版)》 2005年第4期260-262,共3页 Journal of Hangzhou Teachers College(Natural Science)
基金 浙江省自然科学基金资助(编号:197047)
关键词 简化Newton法 半局部收敛性 方程求根 the simplified Newton's method semilocal convergence finding roots of equations
  • 相关文献

参考文献13

  • 1[1]J. M. Ortega and W. C. Rheinbolt. Iterative solution of nonlinear equations in servral variable[M]. New York: Academic press, 1970:449~457.
  • 2王兴华.一个叠代过程的收敛性[J].科学通报,1975,(20):558-559.
  • 3[3]W. B. Gragg and R. A. Tapia. Optimal error bounds for the Newton-Kantorovich theorem[J]. SIAM J. Numer. Anal. , 1974,11(1):10~13.
  • 4[4]J. F. Traub and H. Wozniakowski. Convergence and complexity of Newton's iteration for operator equation[J]. J. Assoc. Comput.Mach. , 1979,26(2) :250~258.
  • 5[5]Z. Huang. A note on the Kantorovich theorem for Newton's iteration[J]. J. Comput. Appl. Math. ,1993,47:211~217.
  • 6[6]J. M. Gutierrez. A new semilocal convergence theorem for Newton's method[J]. J. Comput. Appl. Math. , 1997,79:131~ 145.
  • 7[7]M. A. Hernandez. A modification of the classical Kantorovich conditions for Newton's method[J]. J. Comput. Appl. Math. , 2001,137:201 ~205.
  • 8[8]I. K. Argyros. On a theorem of L. V. Kantorovich theorem concerning Newton's method[J]. J. Comput. Appl. Math. , 2003,155:223~230.
  • 9王兴华,韩丹夫.点估计中的优序列方法以及Smale定理的条件和结论的最优化[J].中国科学(A辑),1989,20(9):905-913. 被引量:22
  • 10[10]W. C. Rheinbolt. A unified convergence theory for a class of iterative processes[J]. SIAM J. Numer. Anal, 1968(5) :42~63 .

二级参考文献5

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部