摘要
在假设算子方程解存在的前提下,给出了以解为中心的一个球域,证明了当初始点落到这个球域时,用于判断简化Newton方法收敛性的Kantorovich定理的条件必然满足,从而由简化Newton方法产生的迭代序列收敛.
Under the supposition that there exists a solution for nonlinear operator equations, a ball with this solution as its center is given. We prove that only if initial point of the simplified Newton's method lies in this ball, all the conditions of the Kantorovich theorem for this method are satisfied, and the iteration sequence generated by this method converges.
出处
《杭州师范学院学报(自然科学版)》
2005年第4期260-262,共3页
Journal of Hangzhou Teachers College(Natural Science)
基金
浙江省自然科学基金资助(编号:197047)
关键词
简化Newton法
半局部收敛性
方程求根
the simplified Newton's method
semilocal convergence
finding roots of equations