摘要
基于线性规划对偶理论,本文给出一种求解超定线性方程组L1─范数解的神经网络方法。这一方法由两部分组成,首先利用LSSM神经网络求出L1问题的近似对偶解,然后利用改进的T-H网络求L1─问题的解,当参数选择适当时,T-H网络的全局渐近稳定点就是问题的精确解,模拟试验也表明了这一方法的可行性。
Based on duality theory of linear programming,a neural network approach for least absolute value problems is proposed in this paper.The approach consists of two phases,at first.an approximate duality solution is obtained by using LSSM neural network,then the prime solution is given by using T-H neural network.It is demonstrated that the asymptotically stable point of T-H networkis the exact prime solution. Simulation results are given to show the validity of the proposed neural network approach.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1996年第1期97-100,共4页
Acta Electronica Sinica
基金
国家自然科学基金
关键词
神经网络
线性方程组
线性规划
Neural network,Linear equation,Linear programming