摘要
本文借助于逼近论的基本原理,最优控制理论、变办法,采用非线性规划的方法,为任意阶光滑曲线拟合建立统一的数学模型,构造出易在计算机上实现的数值方法和程序.本文结果有效地改进、完善和扩充了[3~5]中的主要结果;经实例检验,证实本文建立的模型、构造的算法、编制的程序有效且可行.
According to the fundamentals of approaching theory and calculus of variations of optimical control theory,we establish a unite mathematical, model numerical method and programme for smooth fitting a curve of any order. The result of this paper improve and expand the main result of [3~5] effectively. The examples provided by this paper prove that the model,algoritum and programme founded here are effective and practical.
出处
《应用数学》
CSCD
北大核心
1996年第1期86-91,共6页
Mathematica Applicata