期刊文献+

拟共形映照和线性局部连通集 被引量:4

Quasiconformal Mappings and Linearly Locally Connected Sets
原文传递
导出
摘要 本文证明了Rn中线性局部连通集定义中的两个性质分别在保持无穷远点不变的拟共形映照下是不变的,并且指出保持无穷远点不变的条件是必不可少的.反过来,设f是Rn上的同胚,f( )= ,若线性局部连通集定义中的任意一条性质在f下不变,则f必是拟共形映照. In this paper, we proved that the two conditions of linearly locally connectivity are invariant respectively under quasiconformal mappings which fixed the infinity and pointed out the condition-of fixed the infinity is essential by giving an example. On the other hand, we proved the converse of above results are true also.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 1996年第1期45-49,共5页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金 天元基金 上海交大基金资助项目.
关键词 线性局部连通集 拟共形映照 解析函数 linearly connected set, quasiconformal mappings, quasidisk
  • 相关文献

参考文献5

  • 1F. W. Gehring,O. Martio. Quasiextremal distance domains and extension of quasiconformal mappings[J] 1985,Journal d’Analyse Mathématique(1):181~206
  • 2F. W. Gehring. Univalent functions and the Schwarzian derivative[J] 1977,Commentarii Mathematici Helvetici(1):561~572
  • 3F. W. Gehring,J. V?is?l?. The coefficients of quasiconformality of domains in space[J] 1965,Acta Mathematica(1):1~70
  • 4F. W. Gehring. Extension of quasiconformal mappings in three space[J] 1965,Journal d’Analyse Mathématique(1):171~182
  • 5Lars V. Ahlfors. Quasiconformal reflections[J] 1963,Acta Mathematica(1):291~301

同被引文献37

  • 1褚玉明,程金发.拟圆和模单调域[J].数学学报(中文版),1996,39(4):556-560. 被引量:11
  • 2王仙桃,黄曼子,褚玉明.高维空间中的有界凸域[J].数学学报(中文版),2007,50(3):481-484. 被引量:1
  • 3Gehring, F. W., Characteristic Properties of Quasidisks [M], Les press de l'Universitē de Montrēal, Montreal, 1982.
  • 4Martin, O. & Sarvas, J., Injectivity theorems in plane and space [J], Ann. Acad. Sci.Fenn., 4(1978-1979), 383-401.
  • 5Gehring, F. W., Univalent functions and Schwarizan derivative [J], Comment Math.Helv., 52(1977), 561-572.
  • 6Gehring, F. W. & Osgood, B. G., Uniform domains and the quasihyerbolic metric [J],J. Analyse Math., 36(1979), 50-74.
  • 7Vaesaelae, J., Uniform domain [J], Tohoku Math. J., 40(1988), 101-118.
  • 8Gehring, F. W., Characteristic of quasidisks [C], Banach Center Publications, 48, Warsaw, 1999.
  • 9Hag, K., What is a disk? [C], Banach Center Publications, 48, Warsaw, 1999.
  • 10Gehring, F. W. & Hag, K., Hyperbolic geometry and disks [J], J. Comp. Applied Math.,105(1999), 275-284.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部