期刊文献+

大动脉血管壁应力孤立波 被引量:2

Stress solitary waves of vessel wall in large arteries
下载PDF
导出
摘要 在人体正常生理条件下,血管内的扰动将以应力波的形式传播.讨论了大动脉血管壁应力波的传播问题,得到了描述血管壁运动的非线性方程,分析了其线性近似下的色散关系.该非线性方程在低阶近似下演化为KdV方程,这说明在大动脉血管中存在孤立波,最后给出了该孤立波解并讨论了其实际意义. Under the condition of the normal physiology of human body, the disturbances in large arteries propagate with the form of stress waves. So, the propagation of vessel wall stress waves in arteries is investigated in this paper, and a set of nonlinear equations governing the vessel wall motion is obtained. Basing the set of nonlinear equations, the dispersion relation of the vessel wall stress waves is deduced. Under low order approximation, we found that this set of nonlinear equations may be reduced to a KdV equation, which elucidate the existence of solitary waves in large arterial vessel. Finally, the stress solitons solution is presented, and the feature of this solution is discussed.
出处 《西北师范大学学报(自然科学版)》 CAS 2005年第6期26-29,共4页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10247008)
关键词 应力孤立波 色散关系 KDV方程 stress solitary waves dispersion relations KdV equation
  • 相关文献

参考文献12

  • 1Womersley J R.Oscillatory flow in arteries:The constrained elastic tube as a method of arterial flow and pulse transmission[J].Physics of Medicine and Biology,1957,(2):178-187.
  • 2柳兆荣.桡动脉脉搏波的分析(I)[J].上海力学,1980,1(1):12-12.
  • 3柳兆荣 李惜惜.关于脉图的分析.中国科学:B辑,1983,2(2):131-138.
  • 4吴望一 袁凡.血管的位移波—脉象新释[J].力学学报,1985,17(3):237-242.
  • 5袁凡 吴望一.脉象的血管位移波理论[J].应用数学与力学,1989,10(6):238-242.
  • 6S Yomosa.Solitary waves in large blood vessels[J].Journal of the Physical Society of Japan,1987,56(2):506-520.
  • 7DUAN W S,WANG B R,WEI R J.Reflection and transmission of nonlinear blood waves due to arterial branching[J].Journal Physical Review E,1997,55(1):1773-1778.
  • 8DUAN W S,WANG B R,WEI R J.The decay of soliton in small blood artery[J].Journal of the Physical Society of Japan,1996,65(4):945-947.
  • 9DUAN W S,WANG B R,WEI R J.The cubic nonlinear Schrdinger equation in a fliud-filled elastic tube[J].Phys Lett A,1997,224:154-158.
  • 10DUAN W S.Soliton tranmission and reflection due to the inhomogeneity[J].Communal Theory Physics,1999,31(2):309-312.

共引文献15

同被引文献27

  • 1江金环,王永龙,李子平.稳态光折变空间孤子传输的量子理论[J].物理学报,2004,53(12):4070-4074. 被引量:2
  • 2禹海军,肖奕.TAKENO孤子的量子理论[J].生物物理学报,1993,9(4):626-630. 被引量:1
  • 3陈陆君,梁昌洪.孤子理论及其应用-光孤子理论及光纤通信[M].西安:西安电子科技大学出版社,1997.
  • 4Khatera A H,Hassanb M M,Temsaha R S.Conoidal wave solutions for a class of fifth-order KdV equations[J].Mathematics and Computers in Simulation,2007,70:221-226.
  • 5Drazin P G,Johnson R S.Solitons:An Introduction.Cambridge University Press,1989.
  • 6Kaup D J.On the inverse scattering problem for cubic eigenvalue problems of the class φxxx + 6Qφx +6Rφ = λφ.Stud.Appl.Math.,1980,62:189-216.
  • 7广田良吾.孤子理论中的直接方法[M].王红艳,李春,赵俊晓译.北京:清华大学出版社,2008.
  • 8Cesar Augusto Gomez Sierra,Alvaro H Salas.The generalized tanh-coth method to special types of the fifth-order KdV equation[J].Mathematics and Computation,2008,203:873-880.
  • 9Abdul Majid Wazwaz.Analytic study on the generalized fifth-order KdV equation:New solitons and periodic solutions[J].Communications in Nonlinear Science and Numerical Simulation,2007,12:1172-1180.
  • 10潘祖梁.非线性问题的数学方法及其应用[M].杭州:浙江大学出版社,2002..

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部