摘要
本文利用多频多入射方向的Newton-Kantorovich方法,结合矩量法求解利用后向近场散射数据,对二维导体目标外形成像而产生的非线性耦合积分方程,然后采用基于Gram-Schedmit正交化的伪逆技术求解所得的病态线性方程组,利用最小二乘法给出迭代的初值。为减小计算量,当迭代到一定程度时,改用修正的Newton-Kantorovich方法,同时,每迭代三次,采用一次加速收敛公式。最后,以数值结果证明了本方法的有效性及抗噪声性能。
Newton-Kantorovich method combined with moment method is applied to solve the nonlinear coulped integral equations arising from imaging of conducting object illuminated by plane waves with multiple frequencies and multiple incident directions in the paper, pseudoinverse technique based on Gram-Schedmit procedure is adopted for the solution of ill-conditioned linear equations. Least square error method(LSE) is adopted to calculate the initial values. Two techniques are also introduced to reduce the CPU time. Numerical results have shown the validity of the method and high tolerance of noise.
出处
《电子学报》
EI
CAS
CSCD
北大核心
1996年第3期88-90,共3页
Acta Electronica Sinica
关键词
导体目标
成像
矩量法
电磁逆散射
Newton-Kantorovich method, Imaging of conducting object, Moment method,Pseudoinverse technique