期刊文献+

Influence of Peierls-Nabarro Effect on Finite Thin Bar

Influence of Peierls-Nabarro Effect on Finite Thin Bar
下载PDF
导出
摘要 Considering viscosity of one-dimensional finite metallic bar,the effect of Peierls-Nabarro(P-N) force on nonlinear vibration is investigated under strainless boundary conditions and singlehump initial displacement condition.Governing equation is derived as perturbed Sine-Gordon(SG) type equation.With the size and physical properties specified, the spatial modes and long-time asymptotic states evolve as a function of P-N force.Different dynamic responses are shown numerically: x-independent simple harmonic motion;harmonic motion with single wave;quasi-periodic motion with single wave and chaotic motion with single spatial mode.It’s found that P-N force is also an important factor in affecting the motion of this system. Considering viscosity of one-dimensional finite metallic bar, the effect of Peierls- Nabarro (P-N) force on nonlinear vibration is investigated under strainless boundary conditions and single-hump initial displacement condition. Governing equation is derived as perturbed Sine- Gordon(SG) type equation. With the size and physical properties specified, the spatial modes and long-time asymptotic states evolve as a function of P-N force. Different dynamic responses are shown numerically: x-independent simple harmonic motion; harmonic motion with single wave; quasi-periodic motion with single wave and chaotic motion with single spatial mode. It's found that P-N force is also an important factor in affecting the motion of this system.
出处 《太原理工大学学报》 CAS 北大核心 2005年第6期658-662,共5页 Journal of Taiyuan University of Technology
基金 ShanxiScienceFoundationofYouth(20051004)andYouthFoundationofTaiyuanUniversityofTechnology(12901116)
关键词 Peierls-Nabarro效应 有限细杆 正弦方程 孤立波 混沌理论 sine-gordon equation peierls-nabarro force solitary wave chaos
  • 相关文献

参考文献1

二级参考文献6

  • 1Bishop A R, Flesch R, Forest M G, et al. Correlations between chaos in a perturbed sine-Gordon equation and a truncated model system[J]. SIAM J Mathematical Analysis, 1990,21(6): 1511-1536.
  • 2Bishop A R, Fesser K, Lomdahl P S. Influence of solitons in the initial state on chaos in the driven damped sine-Gordon system[J]. Physica D, 1983,7(2) :259-279.
  • 3Bishop A R, Forest M G, Mclaughlin D W, et al. A quasi-periodic route to chaos in a near-integrable PDE[J]. Physica D, 1986,23(2) :293-328.
  • 4Eilbeck J C, Lomdahl P S, Newell A C. Chaos in the inhomogeneously driven sine-Gordon equation[J]. Physics Letters A,1981,87( 1 ) : 1-4.
  • 5Shu X F, Yang G T. The influence of material properties on dynamic behavior of structures[ A]. In:Senoo M Ed. Proceedings of IMMM'97[C].Kamihama:Mie University Press, 1997, 279-284.
  • 6张年梅,杨桂通.非线性弹性梁中的混沌带现象[J].应用数学和力学,2003,24(5):450-454. 被引量:8

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部