期刊文献+

超弹性-塑性材料中空穴的动生成 被引量:1

Dynamical Cavitation for Hyperelastic-plastic Materials
下载PDF
导出
摘要 研究不可压超弹性-塑性材料球体中空穴的动生成问题,采用不可压neo-Hookean超弹性材料和满足不可压条件与Tresca屈服条件的理想塑性材料来描述材料的弹塑性。当球体表面突加载荷超过其临界值时,球体内部有空穴的突然生成,并随时间无限制地增长。 Dynamical cavitation for an incompressible hyperelastic-plastic material sphere is studied. For the elastic deformation, neo-Hookean material is applied and for the plastic deformation, perfect plastic is applied which satisfied the incompressible condition and Tresca condition.When the suddenly applied load is larger than its critical value, a cavity forms at the center of the sphere and grows without bound.
出处 《太原理工大学学报》 CAS 北大核心 2005年第6期679-681,共3页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(10402018 10272069) 上海市重点学科建设项目(Y0103)
关键词 超弹性-塑性材料 空穴的动生成 无限制地增长 hyperelastic-plastic material dynamical cavitation grow without bound
  • 相关文献

参考文献5

二级参考文献3

共引文献13

同被引文献9

  • 1任九生,程昌钧.热超弹性材料中的空穴生成问题[J].固体力学学报,2004,25(3):275-278. 被引量:7
  • 2Guo T F, Cheng L. Modeling vapor pressure effects on void rupture and crack growth resistance[J]. Acta Materialia, 2002, 50(13): 3487-3500.
  • 3Guo T F, Cheng L. Vapor pressure and void size effects on failure of a constrained ductile film[J]. Journal of the Mechanics and Physics of Solids, 2003, 51(6): 993-1014.
  • 4Fan X J, Zhng G Q. Analytical solution for moisture-induced interface delamination in electronic packaging[C]. Proceedings of Electronic Components and Technology Conference, 2003: 733-738.
  • 5Fan X J, Zhou J, Zhng G Q, et al. A micromechanics-based vapor pressure model in electronic packages[J]. ASME Journal of Electronics Packaging, 2005, 127: 262-267.
  • 6Gent A N, Lindley P B. Internal rupture of bonded rubber cylinders in tension[J]. Royal Society of London, Series A, 1958, 249: 1915-205.
  • 7Ball J M. Discontinuous equilibrium solutions and cavitations in nonlinear elasticity[J]. Phil. Trans. Roy. Soc. Lond. Ser. A, 1982, 306(3) : 557-611.
  • 8任九生,程昌钧.超弹性材料的不稳定性问题[J].力学进展,2009,39(5):566-575. 被引量:9
  • 9任九生,程昌钧.不可压超弹性材料中的空穴分叉[J].应用数学和力学,2002,23(8):783-789. 被引量:16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部