期刊文献+

非线性微分方程渐近解的阶的数值验证

Numerical Verification of the Order of the Asymptotic Solutions of a Nonlinear Differential Equation
下载PDF
导出
摘要 利用Lindstedt-Poincare摄动法,首先求得一个来源于广义相对论的非线性微分方程的渐近解。该渐近解不含长期项,这克服了文献[4]的缺陷。其次,一种数值解验证技术用于证实该渐近解对小参数是一致有效的。 A perturbation method, Lindstedt-Poincare method, is used to obtain the asymptotic expansions of the solutions of a nonlinear differential equation arising in general relativity. The asymptotic solutions contain no secular term, which overcomes a defect in Khuri's paper. A technique of numerical order verification is applied to demonstrate that the asymptotic solutions are uniformly valid for small parameter.
出处 《太原理工大学学报》 CAS 北大核心 2005年第6期747-748,共2页 Journal of Taiyuan University of Technology
关键词 摄动法 渐近解 数值验证 Lindstedt-Poincare法 perturbation method asymptotic solution numerical verification Lindstedt-Poincare method
  • 相关文献

参考文献7

  • 1Nayfeh A H. Introduction to perturbation techniques[M].New York:Wiley, 1981.
  • 2Bosley D L. A technique for the numerical verification of asymptotic expansions[J].SIAM Review, 1996,38(1):128-135.
  • 3Robin W. On the reversion method for the approximate solution of nonlinear ordinary differential equations[J].Journal of Mathematical Education in Science and Technology, 1999,30(1):81-91.
  • 4Khuri S A.Numerical order verfication of the asymptotic expansion of a nonlinear differential equation arising in general relativity[J]. Applied Mathematics and Computation, 2003,134:147-151.
  • 5Deeba Elias, Xie Shishen. The asymptotic expansion and numerical verification of Van der Pol's equation[J]. Journal of Computational Analysis and Applications, 2001, 3(2):165-171.
  • 6Khuri S A, Xie S. On the numerical verification of the asymptotic expansion of Duffing's equation[J]. International Journal of computational Mathematics, 1999,72:325-330.
  • 7Mudavanhu B, O'Malley R E, JR. A new renormalization method for the asymptotic solution of weekly nonlinear vector systems[J].SIAM Journal of Applied Mathematics, 2002,63(2):373-397.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部