摘要
利用Lindstedt-Poincare摄动法,首先求得一个来源于广义相对论的非线性微分方程的渐近解。该渐近解不含长期项,这克服了文献[4]的缺陷。其次,一种数值解验证技术用于证实该渐近解对小参数是一致有效的。
A perturbation method, Lindstedt-Poincare method, is used to obtain the asymptotic expansions of the solutions of a nonlinear differential equation arising in general relativity. The asymptotic solutions contain no secular term, which overcomes a defect in Khuri's paper. A technique of numerical order verification is applied to demonstrate that the asymptotic solutions are uniformly valid for small parameter.
出处
《太原理工大学学报》
CAS
北大核心
2005年第6期747-748,共2页
Journal of Taiyuan University of Technology