期刊文献+

关于盲信号自适应分离中非线性函数的讨论 被引量:1

Discussion on Nonlinear Functions of the Blind Source Separation
下载PDF
导出
摘要 This paper proposes a new algorithm of blind source separation (BSS). The algorithm can overcome the difficulty known as 'the sensors are less than the source signals' and works effectively when the sensors are less. Then, the paper discusses the nonlinear functions used in the new algorithm. A uniform nonlinear function is proposed and some criterion are given to choose its parameters. Finally, some simulations are presented to show the effectness of the algorithm and the correctness of the criterion. This paper proposes a new algorithm of blind source separation (BSS). The algorithm can overcome the difficulty known as "the sensors are less than the source signals" and works effectively when the sensors are less. Then, the paper discusses the nonlinear functions used in the new algorithm. A uniform nonlinear" function is proposed and some criterion are given to choose its parameters. Finally, some simulations are presented to show the effectness of the algorithm and the correctness of the criterion.
出处 《自动化学报》 EI CSCD 北大核心 2005年第6期825-832,共8页 Acta Automatica Sinica
基金 Science Foundation of Guangdong Province for Program of Research Team,国家自然科学基金,National Natural Science Foundation of P.R.China for Excellent Youth,the State Foundation Education Commission of China
关键词 盲信号 自适应分离 非线性函数 BSS 稳定性 Blind source separation (BSS), nonlinear function, stability
  • 相关文献

参考文献2

二级参考文献17

  • 1[3]HAYKIN S.Unsupervised Adaptive Filtering, vol I: Blind Source Separation [M].New York: Wiley, 2000.
  • 2[4]COMON P.Independent component analysis-A new concept? [J].Signal Process, 1994, 36(3): 287-314.
  • 3[5]AMARI S, CICHOCKI A, YANG H H.A new learning algorithm for blind signal separation [J].Adv Neural Inf Process Syst, 1996(8): 757-763.
  • 4[6]GIROLAMI M, FYFE C.Negentropy and kurtosis as projection pursuit indices provide generalised ICA algorithms [A].Cichocki A, Back A.NIPS-96 Blind Signal Separation Workshop [C].Colorado: [s n], 1996.
  • 5[7]PEARLMUTTER B A, PARRA L C.A context-sensitive generalization of ICA [A].Proceedings of the International Conference on Neural Information Processing:1 [C].HongKong:[s n], 1996.151-157.
  • 6[8]KARHUNEN J, JOUTSENSALO J.Representation and separation of signals using nonlinear PCA type learning [J].Neural Networks, 1994, 7(1): 113-127.
  • 7[9]LAMBERT R.Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures[D].Los Angeles: University of Southern California, 1996.
  • 8[10]KARHUNEN J, PAJUNEN P, OJA E.The nonlinear PCA criterion in blind source separation: relations with other approaches [J].Neurocomputing, 1998(22): 5-20.
  • 9[11]LEE T W, GIROLAMI M, BELL A J, et al.A unifying information-theoretic framework for independent component analysis [J].Comput & Math Appl, 2000(39): 1-21.
  • 10[12]CARDOSO J F.The three easy routes to independent component analysis; contrasts and geometry [A].Proceedings of the 3rd International Conference on INDEPENDENT COMPONENT ANALYSIS and BLIND SIGNAL SEPARATION[C].San Diego:[s, n], 2001.

共引文献5

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部