期刊文献+

不同精度冗余数据的融合 被引量:7

Fusion of Different Accuracy Redundant Data
下载PDF
导出
摘要 针对融合误差的最大值和数学期望,提出了一个评判数据融合方法优劣的标准.随后,提出了一种新的数据融合方法,扩展加权平均法.当待融合数据为两个时,通过理论分析得到了计算融合参数的公式.当有更多的数据参与融合时,通过数值仿真得到了该方法的各个融合参数.该方法能解决最大似然估计法所难以解决的均匀分布数据的融合问题,且具有比包括最大似然估计法在内的其它三种有代表性的数据融合方法更高的精度. This paper presents criteria to evaluate different approaches of redundant data fusion; the criteria mostly concern the expectation and the maximum of the fusion error. A new fusion approach for multiple data is also presented, as the data have different accuracies. This approach is an extension of the weighted average. Through theoretic analysis, we obtain the formula to calculate the parameters for fusion of two uniform distribution data. Through Monte Carlo method, we get the parameters when we fuse more data or other distribution data. Our extended weighted method can fuse uniform data that cannot be handled by maximum likelihood approach. Its result is compared with other three representative fusion algorithms: maximum likelihood, optimal weighted average, and HILARE method. Comparison shows that our approach is better than all weighted average approaches; it has the smallest expectation and smallest maximum of the fusion error in all the four approaches.
出处 《自动化学报》 EI CSCD 北大核心 2005年第6期934-942,共9页 Acta Automatica Sinica
基金 国家自然科学基金(60234030) 教育部留学回国人员科研启动基金项目资助
关键词 数据融合 加权平均 均匀分布 最小期望 蒙特卡洛法 Data fusion, weighted average, uniform distribution, minimum expectation,Monte Carlo
  • 相关文献

参考文献15

  • 1Zied Elouedi, Khaled Mellouli, Philippe Smets. Assessing sensor reliability for multi-sensor data fusion within the transferable belief model. IEEE Transactions on Systems, Man, and Cybernetics - Part B, 2004, 34(1):782-787
  • 2Su Jian-Bo, Wang Jun, Xi Yu-Geng. Incremental learning with balanced update on receptive fields for multisensor data fusion. IEEE Transactions on Systems, Man, and Cybernetics - Part B, 2004, 34(1): 659-665
  • 3Solaiman B, Debon R, Pipelier F, Cauvin J M, Roux C. Information fusion, application to data and model fusion for ultrasound image segmentation. IEEE Transactions on Biomedical Engineering, 1999, 46(10):1171-1175
  • 4Ben-Yacoub S, Abdeljaoued Y, Mayoraz E. Fusion of face and speech data for person identity verification.IEEE Transactions on Neural Networks, 1999, 10(5): 1065-1074
  • 5Quartulli M, Datcu M. Information fusion for scene understanding from interferometric SAR data in urban environments. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9): 1976-1985
  • 6Solberg A H S. Contextual data fusion applied to forest map revision. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1234-1243
  • 7Solaiman B, Pierce L E, Ulaby F T. Multisensor data fusion using fuzzy concepts: application to land-cover classification using ERS-1/JERS-1 SAR composites. IEEE Transactions on Geoscience and Remote Sensing,1999, 37(3):1316-1326
  • 8McKeown D M Jr, Cochran S D, Ford S J, McGlone J C, Shufelt J A, Yocum D A. Fusion of HYDICE hyperspectral data with panchromatic imagery for cartographic feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(3): 1261-1277
  • 9Azuaje F, Dubitzky W, Black N, Adamson K. Improving clinical decision support through case-based data fusion. IEEE Transactions on Biomedical Engineering, 1999, 46(10): 1181-1185
  • 10Luo R C, Kay M G. Multisensor integration and fusion in intelligent systems. IEEE Transactions on Systems,Man, and Cybernetics, 1989, 19(5): 901-931

同被引文献68

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部