期刊文献+

直接甲醇燃料电池阳极催化剂的新体系:纳米TiO_2-CNT-PtNi复合纳米催化剂 被引量:15

Novel System of Direct Methanol Fuel Cell Anode Catalysts: NanoTiO_2-CNT-PtNi Complex Catalysts
下载PDF
导出
摘要 采用电合成前驱体Ti(OEt)_4直接水解法和电化学扫描电沉积法制备纳米TiO_2-CNT-PtNi复合纳米催化剂.透射电镜(TEM)和X射线衍射(XRD)测试结果表明,纳米PtNi合金粒子(平均粒径8nm)均匀地分散在纳米TiO2-CNT复合膜的三维网络结构中.通过暂态电化学方法研究表明,复合纳米催化剂的电化学活性比表面积为90m^2/g,对甲醇氧化具有很高的电催化活性和稳定性,常温常压下甲醇氧化峰电位为0.67和0.44V,当温度为60℃时,氧化峰电位负移至0.64和0.30V,氧化峰电流密度高达1.38A/cm^2.复合纳米催化剂对甲醇电氧化的高催化活性和稳定性可归因于多元复合纳米组分的协同催化作用,这种作用导致CO在复合纳米催化剂上的弱吸附,从而避免了催化剂的中毒. The nanoTiO2-CNT-PtNi complex catalysts were prepared by the direct hydrolysis of electrosynthetic precursor Ti(OEt)4 and electrochemical scan electrodepositing method. The results of XRD and SEM show that the PtNi nanoparticle of average size 8 nm was dispersed uniformly on nanoTiO2-CNT complex film surface. The electrocatalytic activity of the nanoTiO2-CNT-PtNi complex catalysts was investigated by cyclic voltammetry and chronopotentiogram. The results indicated that the nanoTiO2-CNT-PtNi complex catalysts with Pt loading of 0.32 mg/cm^2 exhibited high electrochemically active surface area of 90 m^2/g and very high electrocatalytic activity and stability for electro-oxidation of methanol. The oxidation peak potential of methanol was 0.67 and 0.44 V at room temperature in atmosphere pressure, respectively, and shifted to 0.64 and 0.30 V at 60 ℃ and the oxidation peak current of methanol was 1.38 A/cm^2. The high electrocatalytic activity and good stability can be attributed to the synergistic catalytic effect of nanocomposite, which leads to the weak adsorption of CO on complex nanostructure catalysts, avoiding poisoning of the catalysts.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2005年第22期2027-2031,共5页 Acta Chimica Sinica
基金 国家自然科学基金(No.20476001) 安徽省自然科学基金(No.00045317)资助项目.
关键词 直接甲醇燃料电池 阳极催化剂 纳米TiO2 碳纳米管 纳米PtNi合金粒子 复合纳米催化剂 甲醇电氧化 扫描电沉积 直接甲醇燃料电池 纳米催化剂 复合膜 阳极催化剂 电化学方法 电催化活性 三维网络结构 甲醇氧化 X射线衍射 direct methanol fuel cell anode catalyst nanocrystalline TiO2 carbon nanometer tube PtNi alloy particle complex catalyst electro-oxidation of methanol scan electrodepositing
  • 相关文献

参考文献35

  • 1Bard, A. J.; Faulkner, L. R. Electrochemcal Methods: Fundamental and Applications, NewYork, Wiley, 1980, p. 538.
  • 2Mathiyarasu, J.; Remona, A. M.; Mani, A.; Phani, K. L. N.;Yegnaraman, V. J. Solid State Electrochem. 2004, 8(12),968.
  • 3Yang, L. X.; Bock, C.; MacDougall, B.; Park, J. J. Appl.Electrochem. 2004, 34(4), 427.
  • 4Honma, I.; Toda, T. J. Electrochem. Soc. 2003, 150(12),A1689.
  • 5陈卫祥,LEE,Jim-Yang,刘昭林.微波合成碳负载纳米铂催化剂及其对甲醇氧化的电催化性能[J].化学学报,2004,62(1):42-46. 被引量:33
  • 6Chen, W. X.; Lee, J. Y.; Liu, Z. L. Chem. Commun.2002, 21, 2588.
  • 7彭程,程璇,张颖,陈羚,范钦柏.碳载Pt和PtRu催化剂的甲醇电氧化比较[J].物理化学学报,2004,20(4):436-439. 被引量:4
  • 8He, Z.; Chen, J.; Liu, D. Tang, H. Mater. Chem. Phys.2004, 85, 396.
  • 9Che, G.; Lakshml, B. B.; Fisher, E. R.; Martin, C. R.Nature 1998, 393, 346.
  • 10Reddington, E.; Sapienza, A. G.; Viswanathan, R.; Sarangapani, S.; Smotldn, E. S.; Mallouk, T. E. Science 1998,280,1735.

二级参考文献67

  • 1褚道葆 周幸福 等.材料腐蚀与防护研究进展[M].厦门,1998.281-284.
  • 2Ahmadi, T. S. ; Wang, Z. L. ; Green, T. C. ; Henglein, A. ;E1-Sayed, M. A. Science 1996, 272, 1924.
  • 3Liu, Z. L.; Lee, J. Y.; Han, M.; Chen, W. X.; Gan, L.M. J. Mater. Chem. 2002, 12, 2453.
  • 4Okitsu, K. ; Yue, A.; Tanabe, S. ; Mats mnoto, H. Chem.Mater. 2000, 12, 3006.
  • 5Fujimoto, T.; Teraushi, S.; Umehara, H.; Kojima, I.;Henderson, W. Chem. Mater. 2001, 13, 1057.
  • 6Yu, W. Y.; Tu, W. X.; Liu, H. F. Langmuir 1999, 15, 6.
  • 7Tu, W. X.; Liu, H. Y. Chem. Mater. 2000, 12, 564.
  • 8Tu, W. X. ; Liu, H. F. J. Mater. Chem. 2000, 10, 2207.
  • 9Yan, X. P.; Liu, H. F. ; Liew, K. Y. J. Mater. Chem.2001, 11, 3387.
  • 10Komameni, S. ; Li, D. S. ; Newalkar, B. ; Katsuki, H. ;Bhalla, A. S. Langmuir 2002, 18, 5959.

共引文献124

同被引文献210

引证文献15

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部