期刊文献+

关于C^n中实超曲面之间的光滑CR同胚

On Smooth CR Homeomorphisms between Real Hypersurfaces in C^n
下载PDF
导出
摘要 证明了Cn中有限型实超曲面到另一个实超曲面的每一个光滑CR同胚必定是CR微分同胚. Every smooth CR homeomorphism from a real hypersurface of finite type to a real hypersurface in C^n is a CR diffeomorphism.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2005年第5期400-402,共3页 Journal of Jiangxi Normal University(Natural Science Edition)
关键词 有限型 实超曲面 CR同胚 CR微分同胚 finite type real hypersurfaee CR homeomorphism CR diffeomorphism
  • 相关文献

参考文献10

  • 1Ye Z. Local behaviors of CR homeomorphisma between hypersurfaces[ J]. J Geometric Analysis, 1992,2:383-389.
  • 2Pan Y. Biholomorphic mappings between bounded domains in Cn[ J]. Manuscripta Math, 1996,90:317-331.
  • 3Diederich K,Pinchuk S.The inverse of a CR-homeomorphism is CR[J].Inter J Math, 1993,4:379-394.
  • 4Baouendi M S,Jacobowitz H,Treves F.On the analyticity of CR mappings[J] .Ann Math. ,1985,122:365-400.
  • 5Pan Y.Real analyticity of homeomorphic CR mappings between real analytic hypersurfaces in C2[J].Proc A M S,1995,123:373-380.
  • 6Pan Y.A characterization of the finite multiplicity of a CR mapping[J] .Michigan J of Math, 1996,43:465-474.
  • 7Baouendl M S, Rothschild L P.A generalized complex Hopf lemma and its applications to CR mappings[J] .Invent Math, 1993,111:331-348.
  • 8Tumanov A.Extending CR functions on manifolds of finite type to a wedge[J].Mat Sbornik, 1988,136:128-139.
  • 9Huang X,Pan Y.Proper holomorphic mappings betwwen real analytic domains in Cn[J] .Duke Math J, 1996,82:437-446.
  • 10Trepreau J.Sur le prolongement holomorphe des fonctions CR defines surune hypersurface reelle de classe C2 dans Cn[J] .Invent Math,1986,83: 583-592.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部