期刊文献+

基于FPGA乘法器架构的RNS与有符号二进制量转换 被引量:1

RNS to Binary Signed Conversion Based Multiplier on FPGA Architecture
下载PDF
导出
摘要 RNS(余数数制系统)是一种整数运算系统,在粒度精确性,能源损耗和响应速度上有很大的优势。从RNS到二进制数的输入输出转换是基于余数算法的专用架构实现的关键。本文提出了一个基于N类模的RNS与有符号二进制量的通用转换算法在FPGAs的乘法器上的实现过程。该算法能更有效地进行有符号数与RNS的转换。基于该算法类型乘法器在同类型乘法器中显示出了速度优势。文章中该架构被映射到Altera的10K系列的FPGA上。 RNS (Residue Number System)is a kind of integer operation system, and it allows interesting advantages in terms of precision, power consumption and speed. Generally, the output conversion from residue to binary is the crucial point in effective realizations of application specific architectures based on residual arithmetic. This paper presents a general conversion procedure based a N moduli set on FPGAs multiplier. The algorithm can process both unsigned and signed numbers. This multiplier is the fastest in the following comparions.
作者 叶春 张曦煌
出处 《微电子学与计算机》 CSCD 北大核心 2005年第11期148-150,153,共4页 Microelectronics & Computer
  • 相关文献

参考文献4

  • 1R Conway, J Nelson. Fast Converter for 3 Moduli RNS Using New Property of CRT. IEEE Trans. on Computers,August 1999, 48(8): 852~860.
  • 2G C Cardarilli, A Nannarelli, Marco Re. Reducing Power Dissipation in FIR Filters Using the Residue Number System. Midwest Symposium on Circuit and Systems 2000,Lansing, Michigan, Augut 8-11, 2000.
  • 3M Bhardwaj, A Balaram. Low Power Signal Processing Architectures Using Residue Arithmetic. Proceedings of IEEE International Conference on Acoustic, Speech and Signal Processing (ASSP'98), 1998, vol. 5:3017~3020.
  • 4褚振勇 翁木云.FPGA设计及应用[M].西安:西安电子科技大学出版社,2003..

共引文献12

同被引文献6

  • 1马上,胡剑浩.余数系统在VLSI设计中的基本问题研究与进展[C],//中国通信集成电路技术与应用研讨会文集.成都:中国通信学会,2006.
  • 2Skavantzos A, Rao P B. New multipliers modulo 2^n -1[J]. 1EEE Transactions on Computers, 1992,41(8) :957--961.
  • 3Wang Z, Jullien G A, Miller W C. An algorithm for multiplication modulo ( 2^n-1 ) [C].// Proceedings of 39th Midwest Symposium on Circuits and Systems. Ames, IA, USA..IEEE, 1996(8):1301-1304.
  • 4Zimmerman tL Efficient VLSI implementation of modulo(2^n±1) addition and multiplication[C].// Proceeding of 14th IEEE Symposium on Computer Arithmetic. Adelaide, Australia: IEEE, 1999:158-167.
  • 5Kalampoukas L, Nikolos D, Efstathiou C, et al. High-speed parallel-prefix modulo 2^-1 adders[J]. IEEE Transactions on Computers, 2000,49(7) :673-680.
  • 6李军强,李东生,李奕磊,周志增.32×32高速乘法器的设计与实现[J].微电子学与计算机,2009,26(12):23-26. 被引量:9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部