摘要
由于电液速度伺服系统的非线性和参数的不确定性,难以建立精确的数学模型,文中引入RBF(径向基函数)模糊自适应控制,利用RBF神经网络进行自学习,修改和完善模糊规则,改善其动态性能。仿真结果表明该方法具有较强的自适应和自学习能力,即使对复杂的非线性系统也能取得良好的控制效果。
For the non-linearity and uncertanty of electro-hydraulic velocity servo system,an accurate math model is hard to build.This paper introduces a RBF(radial basis function)fuzzy adaptive control method,which takes advantage of RBF Neural Network to proceed self-learning.Thus the fuzzy rules are updated and the performance of electro-hydraulic velocity servo system is improved.The emulation result shows that this method has strong self-adaptive and self-learning ability,which ensure that a favorable control effect can be achieved even though facing a complex non-linear system.
出处
《机械工程师》
2005年第11期67-69,共3页
Mechanical Engineer
关键词
电液速度伺服系统
模糊自适应控制
RBF神经网络
electro-hydraulic velocity servo system
fuzzy adaptive control
RBF neural network