期刊文献+

欧拉-拉格朗日系统的jet辛算法

A Jet Symplectic Algorithm for Euler-Lagrange Systems
下载PDF
导出
摘要 研究了在欧拉-拉格朗日系统上的jet辛算法.证明了第二作者在1998年给出的一个离散的欧拉-拉格朗日(DEL)方程存在一个离散形式的几何结构,它沿着解是不变的,这个结构可以通过对离散的作用量函数求导得到.由此,可以给出此格式的jet辛性质.利用这个结构证明了与此DEL方程相关的离散Nother定理.最后,给出了一个欧拉-拉格朗日方程上的jet辛差分格式的数值算例,并与其它的差分格式进行了比较. A jet symplectic algorithm for Euler-Lagrange systems is studied. It is shown that the discrete Euler-Lagrange(DEL) equation, which was given by the second author in 1998, has fundamental geometric structures that preserve along solutions obtained directly from the variatonal principle. It is shown that these difference schemes are jet symplectic and the Nother' s theorem exists by which we give the definition of a discrete version, the momentum map. A numerical example in jet symplectic difference scheme is given. A comparison with other discretization schemes was made.
出处 《计算物理》 CSCD 北大核心 2005年第6期493-500,共8页 Chinese Journal of Computational Physics
关键词 欧拉-拉格朗日系统 jet辛 动量守恒 Euler-Lagrange system jet symplectic Noether theorem momentum preserving
  • 相关文献

参考文献10

  • 1Marsden J E, Wendlnft Jeffery M. Current and future directions in applied mathematics [ J ]. Mechanical Systems with Symmetry,Variational Principles, and Integration Algorithms, 1997,219- 261.
  • 2Marsden J E, Patrick G P, Shkoller S. Multisymplectic geometry, variational integrators, and nonlinear PDEs [J]. Comn Math Phys,1998, 199:351 - 395.
  • 3Veselov A P. Integrable icrete-ime systems and difference operators [ J]. Funct An and Appl, 1988, 22: 83- 94.
  • 4Chen Jing-Bo, Guo Han-Ying, Wu Ke. Total variation and variational symplectic-energy-momentum integrators [J]. ArXiv: hep-th/0109178vl 23 Sep 2001.
  • 5Chen Jing-Bo, Guo Han-Ying, Wu Ke. Total variation in Hamiltonian formalism symplectic-energy integrators[J]. ArXiv: hep-th/0111185vl 21 Sep 2001, J Math Phy, 2003, 44:1688 - 1702.
  • 6Kane C, Marsden J E, Ortiz M. Symplectic-energy-momentum preserving vriational integrators [J]. Journal of Mathematical Physics,1999,40:3353 - 3371.
  • 7WangShuang-Hu.[D].中科院理论物理所,1998.
  • 8Feng Kang, Wu H M, Qin M Z, Wang D L. Construction of canonical difference schemes for Hamiltonian formalism via generating functions [J]. J Comp Math, 1989, 7(1): 71 -89.
  • 9Sans-Serna M. Symplecfic integretors for Hamiltonian problems:an over view[ J]. Acta Numerica, 1992,1:243 -286.
  • 10WangShuanghu.The preserving structure method of Euler-Lagrange systemes [R].计算物理国家重点实验室年报,1998..

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部