摘要
设计出求解半无限时域上的非齐次线性自治系统的一种长效精细算法(简称:HHPD-LA),这一算法不仅突破了已有长效精细算法中时域有限的限制,无需单位化步骤,也没有矩阵求逆、没有对右端函数的周期性要求,在一定程度上适合于任意形式的右端激励。理论与算例表明:长效的HHPD-LA算法十分有效,计算量比R-K算法小许多。
A long acting HHPD (abbr. HHPD-LA) aiming at non-homogeneous linear automatic system in a semi-infinitive time domain is designed. Breaking through the existing long acting HHPD's finity limit in time domain, this arithmetic doesn't demand unitization, matrix inverse, and the periodicity of the right impetus function as well. Thus it adapts to right impetus in arbitrary form at some level. The theory and examples indicate that the long acting HHPD-LA is in force and with smaller computational complexity than R-K algorithm.
出处
《上海工程技术大学学报》
CAS
2005年第3期215-219,共5页
Journal of Shanghai University of Engineering Science
基金
国家自然科学基金资助项目(50376039)
教育部科学技术研究重点资助项目