期刊文献+

正交Chirp信号数字产生方法 被引量:1

Digital Signal Generation for Orthogonal Chirp Signal
下载PDF
导出
摘要 提出了一种正交Chirp信号的数字产生算法,具有运算量小和存储容量要求低的特点.该算法用二阶时变参数ARMA模型来表示Chirp信号,避免了Chirp信号产生中常规DDS技术的正弦函数的计算和相位截断效应.通过采用二阶时变参数ARMA模型,由于实时计算出了信号的及时值,并不需要有查找表,所以能将数据字长做到很大,可以大大降低幅度量化带来的误差. In this paper, a new method of digital signal generation for orthogonal chirp signal is provided. The algorithm is with low computational complexity and very low memory. Time-varying parameters of the ARMA model in this paper processes chirp signal, it avoid computation of sinusoidal function in chirp signal generation and phase tnmcation. By using this Time-varying parameters ARMA model, real time processes signal, checking or searching tables is not needed, so it can do well data word-length and reduce error consumedly in amplitude quantization.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第6期763-766,共4页 Journal of Sichuan Normal University(Natural Science)
关键词 CHIRP信号 直接数字频率合成 时变参数 ARMA模型 Chirp signal DDS Time-varying parameters ARMA model
  • 相关文献

参考文献7

  • 1Tierney J,Rader C M,Gold E.A digital frequency synthesizer[J].IEEE Twins Audio Electroocouxt,1971,19:48~57.
  • 2Gonzalez J E,Pardo J M,Asensio A,et al.Digital signal generator for LFM~LPI radars[J].Electronics Letters,2003,39:464~465.
  • 3Likothanassis S D,Demiris E D,Karelis D G.A real-time ARMA model structure identification method[J].Digital Signal Processing Proceeding,1997,2:915~918.
  • 4Malladi K M,Kumar R V R,Rao K V.A Gauss-markov model formulation for the estimation of ARMA model of time-varying signals and systems[J].Proceedings of the IEEE-SP,1998,32:657~660.
  • 5Grenier Y.Time-dependent ARMA modeling of Non-stationarySignals[J].IEEE Trans ASSP,1983,31:899~911.
  • 6Djuric P M,Kay S M.Faye boudreaux-bartels gsegmentation of non-stationary signals[J].Proceedings of the IEEE ICASSP,1992,5:161~164.
  • 7王文华,王宏禹.非平稳信号的一种ARMA模型参数估计法[J].信号处理,1998,14(1):33-37. 被引量:12

二级参考文献3

  • 1Grenier Y."Time-dependent ARMA modeling of nonslationary signals"IEEE Trans.on ASSP.Vol.31,No.4,pp899-911,1983.
  • 2Sharm K.C.,Frieldander B.,"Time-varying autoregressive modeling of a clss nonsttionry signls"ICASSP,p222.1-222.4,1984.
  • 3吴金培:"实用时序分析".胡南科学技术出版社,1989.

共引文献11

同被引文献9

  • 1邱雅竹,冯俊.基于小波变换的心电信号检测新方法[J].四川师范大学学报(自然科学版),2005,28(3):270-272. 被引量:6
  • 2邓兵,陶然,王越.线性正则变换的卷积定理及其应用[J].中国科学(E辑),2007,37(4):544-554. 被引量:7
  • 3Moshinsky M,Quesne C.Linear canonical transformations and their unitary representations[J].J Math Phys,1971,12(8):1772-1783.
  • 4Adrian S.Sampling of linear canonical transformed signals[J].Signal Processing,2006,86(7):1421-1425.
  • 5Kamalesh K S,Shiv D J.Signal separation using linear canonical and fractional Fourier transforms[J].Opt Commun,2006,265(2):454-460.
  • 6Koc A,Ozaktas H M,Candan C,et al.Digital computation of linear canonical transforms[J].IEEE Trans Signal Processing,2008,56(6):2383-2394.
  • 7Healy J J,Sheridan J T.Sampling and discretization of the linear canonical transform[J].Signal Processing,2009,89(4):641-648.
  • 8James D F V,Agarwal G S.The generalized Fresnel transform and its applications to optics[J].Opt Commun,1996,126:207-212.
  • 9张贤达.现代信号处理[M].北京:清华大学出版社,2004.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部