期刊文献+

带有非局部时滞两个物种竞争扩散模型的行波解

TRAVELLING WAVE SOLUTIONS FOR TWO-SPECIES COMPETITION-DIFFUSION MODEL WITH NONLOCAL DELAYS
下载PDF
导出
摘要 在分布时滞核是强核的条件下,通过线性链技巧(linear chain trick)和几何奇异扰动理论,获得带有非局部时滞2个物种竞争扩散模型行波解的存在性. Under the condition that the distributed delay kernel is the strong kernel, by the linear chain trick and geometric singular perturbation theory, the existence of travelling wave solutions for the two-species competition-diffusion model with nonlocal delays is obtained.
作者 林国建 袁荣
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期460-463,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金项目(10371010) SRFDP(20030027011)
关键词 行波解 非局部时滞 竞争与扩散模型 几何奇异扰动理论 travelling wave nonlocal delays competition-diffusion model geometric singular perturbation theory
  • 相关文献

参考文献7

  • 1Britton N. Spatial structures and periodic travelling waves in an integrodifferential reaction-diffusion population model[J]. SIAM J Appl Math, 1990, 50:1663.
  • 2Gourley S, Britton N. A predator prey reaction diffusion system with nonlocal effects[J]. J Math Biol, 1996, 34.297.
  • 3Gourley S, Ruan S. Convergence and travelling fronts in functional differential equations with nonlocal terms., a competition model[J]. SlAM J Math Anal, 2003, 35:806.
  • 4Fenichel N. Geometric singular perturbation theory for ordinary differential equations [ J ]. J Differential Equations, 1979, 31:53.
  • 5Jones C K R T. Geometric singular perturbation theory,in dynamical systems, lecture notes in math[M]. New York/Berlin. Springer-Verlag, 1995.44-120.
  • 6Conley C, Gardner R. An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model[J]. Indiana Univ Math J, 1984,33:319.
  • 7Gardner R. Existence and stability of travelling wave solutions of competition models, a degree theoretic approach[J]. J Differential Equations, 1982, 44:343.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部