期刊文献+

单切矩阵Nevanlinna-Pick插值问题

ON SINGLE TANGENTIAL MATRIX NEVANLINNA-PICK INTERPOLATION PROBLEM
下载PDF
导出
摘要 证明了单切矩阵Nevanlinna-Pick插值问题的Pick矩阵合同等价于一个块Toeplitz矩阵.利用这个结果,将求解一个单切矩阵Nevanlinna-Pick插值问题转化求解某个截断的三角矩阵值矩量问题. This paper proves that the Pick matrix determined by the interpolation data of a single tangential matrix Nevanlinna-Pick interpolation problem is congruent and equivalent to a block Toeplitz matrix. On basis of this result, the solution of a single tangential matrix Nevanlinna-Pick interpolation problem is reduced to the solution of a certain truncated matrix trigonometric mnment problem.
作者 金巴 胡永建
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第5期469-472,共4页 Journal of Beijing Normal University(Natural Science)
基金 国家自然科学基金资助项目(10271018)
关键词 单切矩阵Nevanlinna-Pick插值 Pick矩阵 块Toeplitz矩阵 Vandermonde型矩阵 三角矩阵值矩量问题 single tangential matrix Nevanlinna-Pick interpolation Pick matrix block Toeplitz matrix Vandermonde type matrix trigonometric matrix moment problem
  • 相关文献

参考文献11

  • 1Kuh E S, Rohre R A. Theory of linear active networks [M]. San Francisco: Holden-Day, 1967.
  • 2Solymosi J. Interpolation with PR functions based on F.Fenyves' method [ J ]. Periodica Polytechnica (Budapest), 1971, 15:71.
  • 3Youla D C, Saito M. Interpolation with positive-real functions [J]. J Franklin Inst, 1967, 284:77.
  • 4Delsarte Ph, Genin Y, Kamp Y. The Nevanlinna-Pick problem for matrix-valued functions [J]. SIAM J Appl Math, 1979, 36:47.
  • 5Ball J A, Gohberg I, Rodman L. Interpolation of rational matrix functions[M]. Boston: Birkhauser, 1990.
  • 6Dym H J. Contractive matrix functions, reproducing kernel Hilbert spaces and interpolation [M]. Rhode Island: Providence, 1989.
  • 7Kovalishina I V. Analytic theory of a class of interpolation problems [J]. Math USSR Izv, 1984, 22(3):19.
  • 8Chen Gongning, Hu Yongjian. On the multiple Nevanlinna-Pick matrix interpolation in class lp and the Caratheodory matrix coefficient problem [J]. Linear Algebra and its Applications, 1998, 283 : 179.
  • 9Akhiezer N I. The classical moment problem and some related questions in analysis [M], London:Oliver and Boyd, 1965.
  • 10Gohberg I, Lancaster P, Rodman L. Matrix Polynomials [M]. New York: Academic Press, 1982.

二级参考文献1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部